skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 13, 2026

Title: Transmetalation for DNA‐Based Molecular Electronics
Abstract The rational design of molecular electronics remains a grand challenge of materials science. DNA nanotechnology has offered unmatched control over molecular geometry, but direct electronic functionalization is a challenge. Here a generalized method is presented for tuning the local band structure of DNA using transmetalation in metal‐mediated base pairs (mmDNA). A method is developed for time‐resolved X‐ray diffraction using self‐assembling DNA crystals to establish the exchange of Ag+ and Hg2+ in T:T base pairs driven by pH exchange. Transmetalation is tracked over six reaction phases as crystal pH is changed from pH 8.0 to 11.0, and vice versa. A detailed computational analysis of the electronic configuration and transmission in the ensuing crystal structures is then performed. This findings reveal a high conductance contrast in the lowest unoccupied molecular orbitals (LUMO) as a result of metalation. The ability to exchange single transition metal ions as a result of environmental stimuli heralds a means of modulating the conductance of DNA‐based molecular electronics. In this way, both theoretical and experimental basis are established by which mmDNA can be leveraged to build rewritable memory devices and nanoelectronics.  more » « less
Award ID(s):
2317843
PAR ID:
10590482
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract DNA double helices containing metal‐mediated DNA (mmDNA) base pairs are constructed from Ag+and Hg2+ions between pyrimidine:pyrimidine pairs with the promise of nanoelectronics. Rational design of mmDNA nanomaterials is impractical without a complete lexical and structural description. Here, the programmability of structural DNA nanotechnology toward its founding mission of self‐assembling a diffraction platform for biomolecular structure determination is explored. The tensegrity triangle is employed to build a comprehensive structural library of mmDNA pairs via X‐ray diffraction and generalized design rules for mmDNA construction are elucidated. Two binding modes are uncovered: N3‐dominant, centrosymmetric pairs and major groove binders driven by 5‐position ring modifications. Energy gap calculations show additional levels in the lowest unoccupied molecular orbitals (LUMO) of mmDNA structures, rendering them attractive molecular electronic candidates. 
    more » « less
  2. DNA double helices containing metal-mediated DNA (mmDNA) base pairs are constructed from Ag+ and Hg2+ ions between pyrimidine:pyrimidine pairs with the promise of nanoelectronics. Rational design of mmDNA nanomaterials is impractical without a complete lexical and structural description. Here, the programmability of structural DNA nanotechnology toward its founding mission of self-assembling a diffraction platform for biomolecular structure determination is explored. The tensegrity triangle is employed to build a comprehensive structural library of mmDNA pairs via X-ray diffraction and generalized design rules for mmDNA construction are elucidated. Two binding modes are uncovered: N3-dominant, centrosymmetric pairs and major groove binders driven by 5-position ring modifications. Energy gap calculations show additional levels in the lowest unoccupied molecular orbitals (LUMO) of mmDNA structures, rendering them attractive molecular electronic candidates. 
    more » « less
  3. Force fields were developed for metal-mediated DNA (mmDNA) structures, using ab-initio methods to parameterize metal coordination. Two mmDNA were considered, comprising of a cytosine/thymine mismatch with coordinated Ag/Hg metal atoms. These basepairs were parameterized with the proposed computational framework and subjected to multiple validation steps. The generated force fields result in enhanced structural stability, with metallated basepairs rotating into the major groove. Our findings show a higher propeller angle associated with metalated base pair, which agrees with previously reported experimental data. Molecular dynamics (MD) simulations showed that the metallated basepairs stabilized the DNA structure, with the mismatch bases locking together via metal coordination. We anticipate the developed force fields can help in unveiling the structural dynamics of long metallo-DNA nanowires. 
    more » « less
  4. Abstract Adding synthetic nucleotides to DNA increases the linear information density of DNA molecules. Here we report that it also can increase the diversity of their three-dimensional folds. Specifically, an additional nucleotide (dZ, with a 5-nitro-6-aminopyridone nucleobase), placed at twelve sites in a 23-nucleotides-long DNA strand, creates a fairly stable unimolecular structure (that is, the folded Z-motif, or fZ-motif) that melts at 66.5 °C at pH 8.5. Spectroscopic, gel and two-dimensional NMR analyses show that the folded Z-motif is held together by six reverse skinny dZ:dZ base pairs, analogous to the crystal structure of the free heterocycle. Fluorescence tagging shows that the dZ:dZ pairs join parallel strands in a four-stranded compact down–up–down–up fold. These have two possible structures: one with intercalated dZ:dZ base pairs, the second without intercalation. The intercalated structure would resemble the i-motif formed by dC:dC+-reversed pairing at pH ≤ 6.5. This fZ-motif may therefore help DNA form compact structures needed for binding and catalysis. 
    more » « less
  5. Abstract Increasing trends in base cations, pH, and salinity of freshwaters have been documented in US streams over 50 years. These patterns, collectively known as freshwater salinization syndrome (FSS), are driven by multiple processes, including applications of road salt and human-accelerated weathering of impervious surfaces, reductions in acid rain, and other anthropogenic legacies of change. FSS mobilizes chemical cocktails of distinct elemental mixtures via ion exchange, and other biogeochemical processes. We analyzed impacts of FSS on streamwater chemistry across five urban watersheds in the Baltimore-Washington, USA metropolitan region. Through combined grab-sampling and high-frequency monitoring by USGS sensors, regression relationships were developed among specific conductance and major ion and trace metal concentrations. These linear relationships were statistically significant in most of the urban streams (e.g.R2= 0.62 and 0.43 for Mn and Cu, respectively), and showed that specific conductance could be used as a proxy to predict concentrations of major ions and trace metals. Major ions and trace metals analyzed via linear regression and principal component analysis showed co-mobilization (i.e. correlations among combinations of specific conductance (SC), Mn, Cu, Sr2+, and all base cations during certain times of year and hydrologic conditions). Co-mobilization of metals and base cations was strongest during peak snow events but could continue over 24 h after SC peaked, suggesting ongoing cation exchange in soils and stream sediments. Mn and Cu concentrations predicted from SC as a proxy indicated acceptable goodness of fit for predictedvs.observed values (Nash–Sutcliffe efficiency > 0.28). Metals concentrations remained elevated for days after SC decreased following snowstorms, suggesting lag times and continued mobilization after road salt use. High-frequency sensor monitoring and proxies associated with FSS may help better predict contaminant pulses and contaminant exceedances in response to salinization and impacts on aquatic life, infrastructure, and drinking water. 
    more » « less