In this work, we tackle the problem of active camera localization, which controls the camera movements actively to achieve an accurate camera pose. The past solutions are mostly based on Markov Localization, which reduces the position-wise camera uncertainty for localization. These approaches localize the camera in the discrete pose space and are agnostic to the localization-driven scene property, which restricts the camera pose accuracy in the coarse scale. We propose to overcome these limitations via a novel active camera localization algorithm, composed of a passive and an active localization module. The former optimizes the camera pose in the continuous pose space by establishing point-wise camera-world correspondences. The latter explicitly models the scene and camera uncertainty components to plan the right path for accurate camera pose estimation. We validate our algorithm on the challenging localization scenarios from both synthetic and scanned real-world indoor scenes. Experimental results demonstrate that our algorithm outperforms both the state-of-the-art Markov Localization based approach and other compared approaches on the fine-scale camera pose accuracy
more »
« less
This content will become publicly available on March 17, 2026
Splat-Nav: Safe Real-Time Robot Navigation in Gaussian Splatting Maps
We present Splat-Nav, a real-time robot navigation pipeline for Gaussian splatting (GSplat) scenes, a powerful new 3-D scene representation. Splat-Nav consists of two components: first, Splat-Plan, a safe planning module, and second, Splat-Loc, a robust vision-based pose estimation module. Splat-Plan builds a safe-by-construction polytope corridor through the map based on mathematically rigorous collision constraints and then constructs a Bézier curve trajectory through this corridor. Splat-Loc provides real-time recursive state estimates given only an RGB feed from an on-board camera, leveraging the point-cloud representation inherent in GSplat scenes. Working together, these modules give robots the ability to recursively replan smooth and safe trajectories to goal locations. Goals can be specified with position coordinates, or with language commands by using a semantic GSplat. We demonstrate improved safety compared to point cloud-based methods in extensive simulation experiments. In a total of 126 hardware flights, we demonstrate equivalent safety and speed compared to motion capture and visual odometry, but without a manual frame alignment required by those methods. We show online replanning at more than 2 Hz and pose estimation at about 25 Hz, an order of magnitude faster than neural radiance field-based navigation methods, thereby enabling real-time navigation.
more »
« less
- Award ID(s):
- 2220866
- PAR ID:
- 10590516
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Robotics
- Volume:
- 41
- ISSN:
- 1552-3098
- Page Range / eLocation ID:
- 2765 to 2784
- Subject(s) / Keyword(s):
- Robots Neural radiance field Planning Location awareness Trajectory Real-time systems Navigation Collision avoidance Cameras Three-dimensional displays
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose VLM-Social-Nav, a novel Vision-Language Model (VLM) based navigation approach to compute a robot's motion in human-centered environments. Our goal is to make real-time decisions on robot actions that are socially compliant with human expectations. We utilize a perception model to detect important social entities and prompt a VLM to generate guidance for socially compliant robot behavior. VLM-Social-Nav uses a VLM-based scoring module that computes a cost term that ensures socially appropriate and effective robot actions generated by the underlying planner. Our overall approach reduces reliance on large training datasets and enhances adaptability in decision-making. In practice, it results in improved socially compliant navigation in human-shared environments. We demonstrate and evaluate our system in four different real-world social navigation scenarios with a Turtlebot robot. We observe at least 27.38% improvement in the average success rate and 19.05% improvement in the average collision rate in the four social navigation scenarios. Our user study score shows that VLM-Social-Nav generates the most socially compliant navigation behavior.more » « less
-
Pose estimation is a basic module in many robot manipulation pipelines. Estimating the pose of objects in the environment can be useful for grasping, motion planning, or manipulation. However, current state-of-the-art methods for pose estimation either rely on large annotated training sets or simulated data. Further, the long training times for these methods prohibit quick interaction with novel objects. To address these issues, we introduce a novel method for zero-shot object pose estimation in clutter. Our approach uses a hypothesis generation and scoring framework, with a focus on learning a scoring function that generalizes to objects not used for training. We achieve zero-shot generalization by rating hypotheses as a function of unordered point differences. We evaluate our method on challenging datasets with both textured and untextured objects in cluttered scenes and demonstrate that our method significantly outperforms previous methods on this task. We also demonstrate how our system can be used by quickly scanning and building a model of a novel object, which can immediately be used by our method for pose estimation. Our work allows users to estimate the pose of novel objects without requiring any retraining.more » « less
-
In this work, we tackle the problem of category-level online pose tracking of objects from point cloud sequences. For the first time, we propose a unified framework that can handle 9DoF pose tracking for novel rigid object instances as well as per-part pose tracking for articulated objects from known categories. Here the 9DoF pose, comprising 6D pose and 3D size, is equivalent to a 3D amodal bounding box representation with free 6D pose. Given the depth point cloud at the current frame and the estimated pose from the last frame, our novel end-to-end pipeline learns to accurately update the pose. Our pipeline is composed of three modules: 1) a pose canonicalization module that normalizes the pose of the input depth point cloud; 2) RotationNet, a module that directly regresses small interframe delta rotations; and 3) CoordinateNet, a module that predicts the normalized coordinates and segmentation, enabling analytical computation of the 3D size and translation. Leveraging the small pose regime in the pose-canonicalized point clouds, our method integrates the best of both worlds by combining dense coordinate prediction and direct rotation regression, thus yielding an end-to-end differentiable pipeline optimized for 9DoF pose accuracy (without using non-differentiable RANSAC). Our extensive experiments demonstrate that our method achieves new state-of-the-art performance on category-level rigid object pose (NOCSREAL275 [29]) and articulated object pose benchmarks (SAPIEN [34], BMVC [18]) at the fastest FPS ∼ 12.more » « less
-
Safe quadrupedal navigation through unknown environments is a challenging problem. This paper proposes a hierarchical vision-based planning framework (GPF-BG) integrating our previous Global Path Follower (GPF) navigation system and a gap-based local planner using Bézier curves, so called B ézier Gap (BG). This BG-based trajectory synthesis can generate smooth trajectories and guarantee safety for point-mass robots. With a gap analysis extension based on non-point, rectangular geometry, safety is guaranteed for an idealized quadrupedal motion model and significantly improved for an actual quadrupedal robot model. Stabilized perception space improves performance under oscillatory internal body motions that impact sensing. Simulation-based and real experiments under different benchmarking configurations test safe navigation performance. GPF-BG has the best safety outcomes across all experiments.more » « less
An official website of the United States government
