We performed a mesocosm experiment in buckets to examine the effects of leaf litter input on phytoplankton, using chlorophyll a as a proxy. We followed this up with a second experiment examining the effects of tannins and water color on chlorophyll a to better understand potential mechanisms of leaf litter affecting chlorophyll a.
more »
« less
Effects of Tree Leaves, Tannins, and Water Color on Chlorophyll Concentrations in Ponds
Leaf litter is an important input to freshwater systems. Leaves provide carbon, nutrients, and secondary compounds. We examined the effects of tree leaf species on chlorophyll a concentration—a proxy for phytoplankton biomass. We found that an input of Chinese tallow (Triadica sebiferum, invasive in the southeastern USA) and red maple (Acer rubrum) leaves resulted in lower chlorophyll concentrations than controls and other native species. These leaf species also leached tannins, resulting in a darker water color, and either may have caused the patterns observed. To separate these potential mechanisms (darker water leading to light limitation and tannin toxicity), we conducted a second experiment with a fully factorial design manipulating tannins and water color. We found that darker water resulted in the lowest chlorophyll concentration, suggesting light limitation. In the clear-water treatment, the addition of tannic acid lowered chlorophyll concentrations but also resulted in moderately darker water by the end of the experiment. The tannic acid may have been toxic to the algae, or there may have been some light limitation. Our results suggest that tannins that darken water color may substantially suppress phytoplankton and that tree species composition may influence both phytoplankton and the brownification of freshwater.
more »
« less
- Award ID(s):
- 2230887
- PAR ID:
- 10590533
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Hydrobiology
- Volume:
- 3
- Issue:
- 3
- ISSN:
- 2673-9917
- Page Range / eLocation ID:
- 263-278
- Subject(s) / Keyword(s):
- leaf litter chlorophyll tannic acid water color brownification
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Generally, deciduous and evergreen trees coexist in subtropical forests, and both types of leaves are attacked by numerous insect herbivores. However, trees respond and defend themselves from herbivores in different ways, and these responses may vary between evergreen and deciduous species. We examined both the percentage of leaf area removed by herbivores as well as the percentage of leaves attacked by herbivores to evaluate leaf herbivore damage across 14 subtropical deciduous and evergreen tree species, and quantified plant defenses to varying intensities of herbivory. We found that there was no significant difference in mean percentage of leaf area removed between deciduous and evergreen species, yet a higher mean percentage of deciduous leaves were damaged compared to evergreen leaves (73.7% versus 60.2%). Although percent leaf area removed was mainly influenced by hemicellulose concentrations, there was some evidence that the ratio of non-structural carbohydrates:lignin and the concentration of tannins contribute to herbivory. We also highlight that leaf defenses to varying intensities of herbivory varied greatly among subtropical plant species and there was a stronger response for deciduous trees to leaf herbivore (e.g., increased nitrogen or lignin) attack than that of evergreen trees. This work elucidates how leaves respond to varying intensities of herbivory, and explores some of the underlying relationships between leaf traits and herbivore attack in subtropical forests.more » « less
-
Abstract Phytoplankton growth in estuaries is regulated by a complex combination of physical factors with freshwater discharge usually playing a dominating role controlling nutrient and light availability. The role of other factors, including upwelling-generating winds, is still unclear because most estuaries are too small for upwelling to emerge. In this study, we used remotely sensed proxies of phytoplankton biomass and concentration of suspended mineral particles to compare the effect of river discharge with the effect of upwelling events associated with persistent along-channel southerly winds in the Chesapeake Bay, a large estuary where upwelling and its effects on biogeochemical dynamics have been previously reported. The surface chlorophyll-a concentrations (Chl-a) were estimated from Visible Infrared Imaging Radiometer Suite (VIIRS) satellite data using the Generalized Stacked-Constraints Model (GSCM) corrected for seasonal effects by comparing remotely sensed and field-measured data. Light limitation of phytoplankton growth was assessed from the concentration of suspended mineral particles estimated from the remotely sensed backscattering at blue (443 nm) wavelength bbp(443). The nine-year time series (2012–2020) of Chl-a and bbp(443) confirmed that a primary factor regulating phytoplankton growth in this nearshore eutrophic area is discharge from the Susquehanna River, and presumably the nutrients it delivers, with a time lag up to four months. Persistent southerly wind events (2–3 days with wind speed >4 m/s) affected the water column stratification in the central part of the bay but did not result in significant increases in remotely sensed Chl-a. Analysis of model simulations of selected upwelling-favorable wind events revealed that strong southerly winds resulted in well-defined lateral (East–West) responses but were insufficient to deliver high-nutrient water to the surface layer to support phytoplankton bloom. We conclude that, in the Chesapeake Bay, which is a large, eutrophic estuary, wind-driven upwelling of deep water plays a limited role in driving phytoplankton growth under most conditions compared with river discharge. Integr Environ Assess Manag 2022;18:921–938. © 2022 SETAC KEY POINTS River discharge is a primary factor regulating phytoplankton growth in the Chesapeake Bay. Upwelling-generating wind events were insufficient to support phytoplankton blooms. Generalized Stacked-Constraints Model (GSCM) is a useful method for processing ocean color satellite imagery in the nearshore areas.more » « less
-
Dark-induced leaf senescence is an extreme example of leaf senescence induced by light deprivation. Prolonged dark treatments of individual leaves result in chlorophyll degradation, macromolecule catabolism, and reduction of photosynthesis. In this work, we described an at-home Dark-induced Leaf Senescence laboratory exercise for a junior-level undergraduate Plant Physiology course. To perform the dark-induced senescence assay on attached leaves, students may cover individual leaves of an outdoor plant with aluminum foils and record the leaf morphology with controlled vocabularies for ~9 days. To perform senescence assays on detached leaves, the students may incubate detached leaves in various aqueous solutions (e.g., tap water, sucrose solution, alkali solution, and acid solution) either in the dark or under natural light, and then record the leaf morphology with controlled vocabularies for ~9 days. This laboratory exercise provides hands-on opportunities for students to understand the relationships among sunlight, chlorophyll, and photosynthesis, in the comfort of students' own homes. Specifically, it helps students to comprehend intrinsic and dark-induced leaf senescence mechanisms, the effects of sugars on leaf senescence, and the importance of optimal pH to plant health. This laboratory exercise can be adapted to support inquiry-based learning or be implemented in a middle or high school classroom.more » « less
-
Abstract The Mid‐Atlantic Bight (MAB) hosts a large and productive marine ecosystem supported by high phytoplankton concentrations. Enhanced surface chlorophyll concentrations at the MAB shelf‐break front have been detected in synoptic measurements, yet this feature is not present in seasonal means. To understand why, we assess the conditions associated with enhanced surface chlorophyll at the shelf break. We employ in‐situ and remote sensing data, and a 2‐dimensional model to show that Ekman restratification driven by upfront winds drives ephemerally enhanced chlorophyll concentrations at the shelf‐break front in spring. Using 8‐day composite satellite‐measured surface chlorophyll concentration data from 2003–2020, we constructed a daily running mean (DRM) climatology of the cross‐shelf chlorophyll distribution for the northern MAB region. While the frontal enhancement of chlorophyll is apparent in the DRM climatology, it is not captured in the seasonal climatology due to its short duration of less than a week. In‐situ measurements of the frontal chlorophyll enhancement reveal that chlorophyll is highest in spring when the shelf‐break front slumps offshore from its steep wintertime position causing restratification in the upper part of the water column. Several restratification mechanisms are possible, but the first day of enhanced chlorophyll at the shelf break corresponds to increasing upfront winds, suggesting that the frontal restratification is driven by offshore Ekman transport of the shelf water over the denser slope water. The 2‐dimensional model shows that upfront winds can indeed drive Ekman restratification and alleviate light limitation of phytoplankton growth at the shelf‐break front.more » « less
An official website of the United States government

