Abstract Ice formation is generally considered to exclude many particles and most solutes and thus be relatively pure compared to ambient waters. Because river ice forms by a combination of thermal and mechanical processes, some level of sediment entrainment in the ice column is likely, though reports of sediment in river ice are limited. We observed high and sporadic levels of silt and sand in ice of the Kuskokwim and Tanana rivers (Alaska, the United States) during routine field studies. These observations led us to make a more comprehensive survey of sediment entrainment in river ice of the Kuskokwim and Yukon rivers and several of their tributaries. We collected and subsampled 48 ice cores from 19 different river locations in March 2023, which included concurrent measurements of water turbidity, velocity, and depth. Approximately 60% of cores contained detectable levels of sediment, averaging 438 mg/L with median concentrations exceeding 1000 mg/L in three cores from the Yukon and Kuskokwim main stems. Many cores had even higher concentrations at certain intervals, with seven cores having subsamples exceeding 2000 mg/L; these were often located in the middle or lower portion of the ice column. Jumble ice, formed mechanically by frazil‐pan jamming during freeze‐up, was generally the best predictor of higher sediment entrainment, and these locations often had higher under‐ice velocities and depths. Our observation of high and widespread sediment entrainment in northern river ice, particularly in jumble‐ice fields, may have implications for sediment transport regimes, ice strength and transportation safety, and how rivers break up in the springtime. 
                        more » 
                        « less   
                    
                            
                            Freeze‐Up Ice Jams and Channel Hydraulics Cause Hazardous Open Water Zones Within Winter Ice Cover on the Kuskokwim and Yukon Rivers and Their Tributaries
                        
                    
    
            Abstract Timing and completeness of freeze‐up on northern rivers impact winter travel and indicate responses to climate change. Open‐water zones (OWZs) within ice‐covered rivers are hazardous and may be increasing in extent and persistence. To better understand the distribution, variability, and mechanisms of OWZs, we selected nine reaches totaling 380 river‐km for remote sensing analysis and field studies in western Alaska. We initially identified 48 OWZs from November 2022 optical imagery, inventoried their persistence into late winter and interannual consistency over previous years, and at a subset measured ice thickness, water depth and velocity, and physicochemistry. The most consistent locations of OWZ formation occurred below sharp bends and channel constrictions, whereas locations associated with river bars and eroding banks were more transient. Of 359 OWZs identified in early winter over 6 years, 8% persisted into late winter―all on the Yukon River mainstem. Although several OWZs were in locations where we anticipated groundwater influence, we found no field data indication of groundwater upwelling. Observations of jumble ice upstream of many OWZs led us to examine freeze‐up ice jam locations in optical imagery, which showed strong correspondence to downstream OWZs. We hypothesize that reaches downstream of ice jams are much slower to freeze‐over due to restricted ice transport and high turbulence caused by channel form and ice‐affected hydraulics. Future work should focus on evaluation of this and other competing hypothesis at both reach and river network scales to predict OWZ locations and occurrence relative to other processes affecting river freeze‐up in northern climates. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1836523
- PAR ID:
- 10590553
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 61
- Issue:
- 4
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Recent low sea ice extents across Distributed Biological Observatory (DBO) sites in the northern Bering, Chukchi, and Beaufort seas of the Pacific Arctic region have been due to both later fall/winter freeze-up and earlier spring breakup, which in turn have important cascading impacts on the physical, biological, and biogeochemical state of the overall marine environment throughout this region. Satellite observations of the DBO sites that span across a large latitudinal gradient (~62–72°N) include sea surface temperature (SST), sea ice concentration, annual sea ice persistence and the timing of sea ice breakup/formation, chlorophyll-a concentrations, and primary productivity. While we observe significant trends in SST, sea ice, and chlorophyll-a/primary productivity throughout the year, the most significant and synoptic trends for the DBO sites have been those during late summer and autumn (warming SST during October/November, later shifts in the timing of sea ice formation, and increases in chlorophyll-a/primary productivity during August/September). Measurements of the transmittance of solar radiation through the ocean water column is also one of the critical elements for understanding the potential implications of these recent shifts in sea ice, including impacts on primary production, damaging effects of UV radiation on phytoplankton, photodegradation of dissolved organic matter, and upper ocean heating. Field-based observations of downwelling irradiance and upwelling radiance profiles in the top ~30-50 meters of ocean waters are also presented, collected at discrete stations across DBO sites 1–5 in the northern Bering and Chukchi Seas. Profiles were collected during July 2018, 2019, 2021, 2022, and 2023 as part of the DBO program onboard the Canadian Coast Guard Ship (CCGS) Sir Wilfrid Laurier, and represent a first time series of optical measurements across these DBO sites. Continued monitoring of the transmittance of solar radiation through the water column at these DBO sites will be crucial for understanding changes in the underwater light field as the duration of the open water season continues to lengthen with declining seasonal sea ice cover.more » « less
- 
            The timing of sea ice retreat and advance in Arctic coastal waters varies substantially from year to year. Various activities, ranging from marine transport to the use of sea ice as a platform for industrial activity or winter travel, are af- fected by variations in the timing of breakup and freeze-up, resulting in a need for indicators to document the regional and temporal variations in coastal areas. The primary objec- tive of this study is to use locally based metrics to construct indicators of breakup and freeze-up in the Arctic and subarc- tic coastal environment. The indicators developed here are based on daily sea ice concentrations derived from satellite passive-microwave measurements. The “day of year” indica- tors are designed to optimize value for users while building on past studies characterizing breakup and freeze-up dates in the open pack ice. Relative to indicators for broader adja- cent seas, the coastal indicators generally show later breakup at sites known to have landfast ice. The coastal indicators also show earlier freeze-up at some sites in comparison with freeze-up for broader offshore regions, likely tied to ear- lier freezing of shallow-water regions and areas affected by freshwater input from nearby streams and rivers. A factor analysis performed to synthesize the local indicator varia- tions shows that the local breakup and freeze-up indicators have greater spatial variability than corresponding metrics based on regional ice coverage. However, the trends towards earlier breakup and later freeze-up are unmistakable over the post-1979 period in the synthesized metrics of coastal breakup and freeze-up and the corresponding regional ice coverage. The findings imply that locally defined indicators can serve as key links between pan-Arctic or global indica- tors such as sea ice extent or volume and local uses of sea ice, with the potential to inform community-scale adaptation and response.more » « less
- 
            Climate change is causing pronounced shifts during winter in the US, including shortening the snow season, reducing snowpack, and altering the timing and volume of snowmelt-related runoff. These changes in winter precipitation patterns affect in-stream freeze-thaw cycles, including ice and snow cover, and can trigger direct and indirect effects on in-stream physical, chemical, and biological processes in ~60% of river basins in the Northern Hemisphere. We used high-resolution, multi-parameter data collected in a headwater stream and its local environment (climate and soil) to determine interannual variability in physical, chemical, and biological signals in a montane stream during the winter of an El Niño and a La Niña year. We observed ~77% greater snow accumulation during the El Niño year, which caused the formation of an ice dam that shifted the system from a primarily lotic to a lentic environment. Water chemistry and stream metabolism parameters varied widely between years. They featured anoxic conditions lasting over a month, with no observable gross primary production (GPP) occurring under the ice and snow cover in the El Niño year. In contrast, dissolved oxygen and GPP remained relatively high during the winter months of the La Niña year. These redox and metabolic changes driven by changes in winter precipitation have significant implications for water chemistry and biological functioning beyond the winter. Our study suggests that as snow accumulation and hydrologic conditions shift during the winter due to climate change, hot-spots and hot-moments for biogeochemical processing may be reduced, with implications for the downstream movement of nutrients and transported materials.more » « less
- 
            This dataset provides a comprehensive, field-validated Synthetic Aperture Radar (SAR) dataset for Arctic lake ice classification, with a particular emphasis on under-ice water salinity. It includes in situ measurements from 104 lakes (132 measurement sites) across northern Alaska collected in May 2024, capturing data on lake ice thickness, snow depth, lake depth, and specific conductance of unfrozen water beneath the ice. These field observations are integrated with multi-season Sentinel-1 SAR imagery from early winter (January) to late winter (May), along with additional geospatial datasets such as Interferometric Synthetic Aperture Radar (IfSAR)-derived elevation models and summer ice-off timing. The dataset enables improved differentiation of bedfast and floating ice lakes, particularly identifying lakes with brackish to saline water that were previously misclassified as bedfast ice lakes using traditional SAR-based remote sensing approaches. This resource supports research in permafrost stability, Arctic hydrology, climate change impacts, and winter water resource availability. This work was supported by grants from the U.S. National Science Foundation (OPP-2336164 and OPP-2336165) and the European Research Council project No. 951288 (Q-Arctic). Additional support was provided under a Broad Agency Announcement award from ERDC-CRREL, PE 0603119A.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
