skip to main content

Search for: All records

Award ID contains: 1836523

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Youth-focused community and citizen science (CCS) is increasingly used to promote science learning and to increase the accessibility of the tools of scientific research among historically marginalized and underserved communities. CCS projects are frequently categorized according to their level of public participation and their distribution of power between professional scientists and participants from collaborative and co-created projects to projects where participants have limited roles within the science process. In this study, we examined how two different CCS models, a contributory design and a co-created design, influenced science self-efficacy and science interest among youth CCS participants. We administered surveys and conducted post-program interviews with youth participation in two different CCS projects in Alaska, the Winterberry Project and Fresh Eyes on Ice, each with a contributory and a co-created model. We found that youth participating in co-created CCS projects reflected more often on their science self-efficacy than did youth in contributory projects. The CCS program model did not influence youths’ science interest, which grew after participating in both contributory and co-created projects. Our findings suggest that when youth have more power and agency to make decisions in the science process, as in co-created projects, they have greater confidence in their abilities to conduct science. Further, participating in CCS projects excites and engages youth in science learning, regardless of the CCS program design. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
    Abstract. The formation, growth, and decay of freshwater ice on lakes andrivers are fundamental processes of northern regions with wide-rangingimplications for socio-ecological systems. Ice thickness at the end ofwinter is perhaps the best integration of cold-season weather and climate,while the duration of thick and growing ice cover is a useful indicator forthe winter travel and recreation season. Both maximum ice thickness (MIT)and ice travel duration (ITD) can be estimated from temperature-driven icegrowth curves fit to ice thickness observations. We simulated and analyzedice growth curves based on ice thickness data collected from a range ofobservation programs throughout Alaska spanning the past 20–60 years tounderstand patterns and trends in lake and river ice. Results suggestreductions in MIT (thinning) in several northern, interior, and coastalregions of Alaska and overall greater interannual variability in riverscompared to lakes. Interior regions generally showed less variability in MITand even slightly increasing trends in at least one river site. Average ITDranged from 214 d in the northernmost lakes to 114 d acrosssouthernmost lakes, with significant decreases in duration for half ofsites. River ITD showed low regional variability but high interannualvariability, underscoring the challenges with predictingseasonally consistent river travel. Standardization and analysis of theseice observation data provide a comprehensive summary for understandingchanges in winter climate and its impact on freshwater ice services. 
    more » « less