skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward Understanding Molecular Recognition between PRMTs and their Substrates
Protein arginine methylation is a widespread eukaryotic posttranslational modification thatoccurs with as much frequency as ubiquitinylation. Yet, how the nine different human protein argininemethyltransferases (PRMTs) recognize their respective protein targets is not well understood. Thisreview summarizes the progress that has been made over the last decade or more to resolve this significantbiochemical question. A multipronged approach involving structural biology, substrate profiling,bioorthogonal chemistry and proteomics is discussed.  more » « less
Award ID(s):
2003769
PAR ID:
10590571
Author(s) / Creator(s):
;
Publisher / Repository:
Bentham Science Publishers
Date Published:
Journal Name:
Current Protein & Peptide Science
Volume:
21
Issue:
7
ISSN:
1389-2037
Page Range / eLocation ID:
713 to 724
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract MotivationProtein function prediction, based on the patterns of connection in a protein–protein interaction (or association) network, is perhaps the most studied of the classical, fundamental inference problems for biological networks. A highly successful set of recent approaches use random walk-based low-dimensional embeddings that tend to place functionally similar proteins into coherent spatial regions. However, these approaches lose valuable local graph structure from the network when considering only the embedding. We introduce GLIDER, a method that replaces a protein–protein interaction or association network with a new graph-based similarity network. GLIDER is based on a variant of our previous GLIDE method, which was designed to predict missing links in protein–protein association networks, capturing implicit local and global (i.e. embedding-based) graph properties. ResultsGLIDER outperforms competing methods on the task of predicting GO functional labels in cross-validation on a heterogeneous collection of four human protein–protein association networks derived from the 2016 DREAM Disease Module Identification Challenge, and also on three different protein–protein association networks built from the STRING database. We show that this is due to the strong functional enrichment that is present in the local GLIDER neighborhood in multiple different types of protein–protein association networks. Furthermore, we introduce the GLIDER graph neighborhood as a way for biologists to visualize the local neighborhood of a disease gene. As an application, we look at the local GLIDER neighborhoods of a set of known Parkinson’s Disease GWAS genes, rediscover many genes which have known involvement in Parkinson’s disease pathways, plus suggest some new genes to study. Availability and implementationAll code is publicly available and can be accessed here: https://github.com/kap-devkota/GLIDER. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract MotivationAs fewer than 1% of proteins have protein function information determined experimentally, computationally predicting the function of proteins is critical for obtaining functional information for most proteins and has been a major challenge in protein bioinformatics. Despite the significant progress made in protein function prediction by the community in the last decade, the general accuracy of protein function prediction is still not high, particularly for rare function terms associated with few proteins in the protein function annotation database such as the UniProt. ResultsWe introduce TransFew, a new transformer model, to learn the representations of both protein sequences and function labels [Gene Ontology (GO) terms] to predict the function of proteins. TransFew leverages a large pre-trained protein language model (ESM2-t48) to learn function-relevant representations of proteins from raw protein sequences and uses a biological natural language model (BioBert) and a graph convolutional neural network-based autoencoder to generate semantic representations of GO terms from their textual definition and hierarchical relationships, which are combined together to predict protein function via the cross-attention. Integrating the protein sequence and label representations not only enhances overall function prediction accuracy, but delivers a robust performance of predicting rare function terms with limited annotations by facilitating annotation transfer between GO terms. Availability and implementationhttps://github.com/BioinfoMachineLearning/TransFew. 
    more » « less
  3. Abstract MotivationMillions of protein sequences have been generated by numerous genome and transcriptome sequencing projects. However, experimentally determining the function of the proteins is still a time consuming, low-throughput, and expensive process, leading to a large protein sequence-function gap. Therefore, it is important to develop computational methods to accurately predict protein function to fill the gap. Even though many methods have been developed to use protein sequences as input to predict function, much fewer methods leverage protein structures in protein function prediction because there was lack of accurate protein structures for most proteins until recently. ResultsWe developed TransFun—a method using a transformer-based protein language model and 3D-equivariant graph neural networks to distill information from both protein sequences and structures to predict protein function. It extracts feature embeddings from protein sequences using a pre-trained protein language model (ESM) via transfer learning and combines them with 3D structures of proteins predicted by AlphaFold2 through equivariant graph neural networks. Benchmarked on the CAFA3 test dataset and a new test dataset, TransFun outperforms several state-of-the-art methods, indicating that the language model and 3D-equivariant graph neural networks are effective methods to leverage protein sequences and structures to improve protein function prediction. Combining TransFun predictions and sequence similarity-based predictions can further increase prediction accuracy. Availability and implementationThe source code of TransFun is available at https://github.com/jianlin-cheng/TransFun. 
    more » « less
  4. Abstract MotivationGiven a protein of unknown function, fast identification of similar protein structures from the Protein Data Bank (PDB) is a critical step for inferring its biological function. Such structural neighbors can provide evolutionary insights into protein conformation, interfaces and binding sites that are not detectable from sequence similarity. However, the computational cost of performing pairwise structural alignment against all structures in PDB is prohibitively expensive. Alignment-free approaches have been introduced to enable fast but coarse comparisons by representing each protein as a vector of structure features or fingerprints and only computing similarity between vectors. As a notable example, FragBag represents each protein by a ‘bag of fragments’, which is a vector of frequencies of contiguous short backbone fragments from a predetermined library. Despite being efficient, the accuracy of FragBag is unsatisfactory because its backbone fragment library may not be optimally constructed and long-range interacting patterns are omitted. ResultsHere we present a new approach to learning effective structural motif presentations using deep learning. We develop DeepFold, a deep convolutional neural network model to extract structural motif features of a protein structure. We demonstrate that DeepFold substantially outperforms FragBag on protein structural search on a non-redundant protein structure database and a set of newly released structures. Remarkably, DeepFold not only extracts meaningful backbone segments but also finds important long-range interacting motifs for structural comparison. We expect that DeepFold will provide new insights into the evolution and hierarchical organization of protein structural motifs. Availability and implementationhttps://github.com/largelymfs/DeepFold 
    more » « less
  5. Abstract MotivationProteins interact to form complexes to carry out essential biological functions. Computational methods such as AlphaFold-multimer have been developed to predict the quaternary structures of protein complexes. An important yet largely unsolved challenge in protein complex structure prediction is to accurately estimate the quality of predicted protein complex structures without any knowledge of the corresponding native structures. Such estimations can then be used to select high-quality predicted complex structures to facilitate biomedical research such as protein function analysis and drug discovery. ResultsIn this work, we introduce a new gated neighborhood-modulating graph transformer to predict the quality of 3D protein complex structures. It incorporates node and edge gates within a graph transformer framework to control information flow during graph message passing. We trained, evaluated and tested the method (called DProQA) on newly-curated protein complex datasets before the 15th Critical Assessment of Techniques for Protein Structure Prediction (CASP15) and then blindly tested it in the 2022 CASP15 experiment. The method was ranked 3rd among the single-model quality assessment methods in CASP15 in terms of the ranking loss of TM-score on 36 complex targets. The rigorous internal and external experiments demonstrate that DProQA is effective in ranking protein complex structures. Availability and implementationThe source code, data, and pre-trained models are available at https://github.com/jianlin-cheng/DProQA. 
    more » « less