skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Model estimates of water yield and N yield under alternative N management practices across the Mississippi-Atchafalaya River basin during 1980-2017
This dataset contains maps of water yield and nitrogen (N) yield each year, covering the Mississippi/Atchafalaya River Basin (MARB) spanning from 1980 to 2017. These maps were reconstructed by aggregating from a daily model (Dynamic Land Ecosystem Model, DLEM) estimates and are at 5-min×5-min (0.08333° Lat × 0.08333° Lon) resolution. There are two subfolders, "TT" and "DT", within this folder. "TT" and "DT" respectively indicate "traditional timing" and "dynamic timing" of nitrogen fertilizer applications in regards to the model experiments in the main text. The "TT" folder contains the gridded model estimates of water yield (named by "Runoff") and nitrogen yield (named by "Nleach") at annual bases. TT reflects our best estimate of water and N fluxes within the context of multi-factor environmental changes including climate, atmospheric CO2 concentration, N deposition, land use, and human management practices (such as fertilizer use, tillage, tile drainage, etc.). The "DT" folder only contains the model estimates of nitrogen yield (“Nleach”) under an alternative N management practice. More details can be found in the linked publication.  more » « less
Award ID(s):
1945036
PAR ID:
10590598
Author(s) / Creator(s):
;
Publisher / Repository:
Iowa State University
Date Published:
Subject(s) / Keyword(s):
Environmental Science
Format(s):
Medium: X Size: 56053114 Bytes
Size(s):
56053114 Bytes
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The atmospheric concentration of nitrous oxide (N2O) has increased by 23% since the pre‐industrial era, which substantially destructed the stratospheric ozone layer and changed the global climate. However, it remains uncertain about the reasons behind the increase and the spatiotemporal patterns of soil N2O emissions, a primary biogenic source. Here, we used an integrative land ecosystem model, Dynamic Land Ecosystem Model (DLEM), to quantify direct (i.e., emitted from local soil) and indirect (i.e., emissions related to local practices but occurring elsewhere) N2O emissions in the contiguous United States during 1900–2019. Newly developed geospatial data of land‐use history and crop‐specific agricultural management practices were used to force DLEM at a spatial resolution of 5 arc‐min by 5 arc‐min. The model simulation indicates that the U.S. soil N2O emissions totaled 0.97 ± 0.06 Tg N year−1during the 2010s, with 94% and 6% from direct and indirect emissions, respectively. Hot spots of soil N2O emission are found in the US Corn Belt and Rice Belt. We find a threefold increase in total soil N2O emission in the United States since 1900, 74% of which is from agricultural soil emissions, increasing by 12 times from 0.04 Tg N year−1in the 1900s to 0.51 Tg N year−1in the 2010s. More than 90% of soil N2O emission increase in agricultural soils is attributed to human land‐use change and agricultural management practices, while increases in N deposition and climate warming are the dominant drivers for N2O emission increase from natural soils. Across the cropped acres, corn production stands out with a large amount of fertilizer consumption and high‐emission factors, responsible for nearly two‐thirds of direct agricultural soil N2O emission increase since 1900. Our study suggests a large N2O mitigation potential in cropland and the importance of exploring crop‐specific mitigation strategies and prioritizing management alternatives for targeted crop types. 
    more » « less
  2. This dataset presents spatiotemporal dynamics of phosphorus (P) fertilizer management (application rate, timing, and method) at a 4km × 4 km resolution in agricultural land of the contiguous U.S. from 1850 to 2022. By harmonizing multiple data sources, we reconstructed the county-level crop-specific P fertilizer use history. We then spatialized and resampled P fertilizer use data to 4 km × 4 km gridded maps based on historical U.S. cropland distribution and crop type database developed by Ye et al. (2024). This dataset contains (1) P fertilizer total consumption and mean application rate at the national level (Tabular); (2) P fertilizer consumption of 11 crops at the state level (Tabular); (3) P fertilizer consumption of permanent pasture (Tabular); (4) P fertilizer consumption of non-farm at the state level (Tabular); (5) P fertilizer application rate of 11 crop types at the state level (Tabular); (6) P fertilizer application rate of 11 crop types at the county level (Tabular); (7) P fertilizer application timing ratio at the state level (Tabular); (8) P fertilizer application method ratio at the state level (Tabular); (9) Gridded maps of P fertilizer application rate based on state-level data; (10) and (11) Gridded maps of P fertilizer application rate based on county-level data; (12)-(20) Gridded maps of P fertilizer application rate for each crop. A detailed description of the data development processes, key findings, and uncertainties can be found in Cao, P., Yi, B., Bilotto, F., Gonzalez Fischer, C., Herrero, M., Lu, C.: Crop-specific Management History of Phosphorus fertilizer input (CMH-P) in the croplands of United States: Reconciliation of top-down and bottom-up data sources, is under review for the journal Earth System Science Data (ESSD). https://essd.copernicus.org/preprints/essd-2024-67/#discussion.  This work is supported by the Iowa Nutrient Research Center, the ISU College of Liberal Arts and Sciences Dean's Faculty Fellowship, and NSF CAREER grant (1945036). 
    more » « less
  3. Abstract The large areal extent of hypoxia in the northern Gulf of Mexico has been partially attributed to substantial nitrogen (N) loading from the Mississippi River basin, which is driven by multiple natural and human factors. The available water quality monitoring data and most of the current models are insufficient to fully quantify N load magnitude and the underlying controls. Here we use a process‐based Dynamic Land Ecosystem Model to examine how multiple factors (synthetic N fertilizer, atmospheric N deposition, land use changes, climate variability, and increasing atmospheric CO2) have affected the loading and delivery of total nitrogen (TN) consisting of ammonium and nitrate (dissolved inorganic N) and total organic nitrogen from the Mississippi River basin during 1901–2014. The model results indicate that TN export during 2000–2014 was twofold larger than that in the first decade of twentieth century: Dissolved inorganic N export increased by 140% dominated by nitrate; total organic nitrogen export increased by 53%. The substantial enrichment of TN export since the 1960s was strongly associated with increased anthropogenic N inputs (synthetic N fertilizer and atmospheric N deposition). The greatest export of TN was in the spring. Although the implementation of N reduction has been carried out over the past three decades, total N loads to the northern Gulf of Mexico have not decreased significantly. Due to the legacy effect from historical N accumulation in soils and riverbeds, a larger reduction in synthetic N fertilizer inputs as well as improved N management practices are needed to alleviate ocean hypoxia in the northern Gulf of Mexico. 
    more » « less
  4. At two sites in the North Central USA (Michigan (KBS) and Wisconsin (ARL)), we evaluated the effect of N fertilization on the yield and quality of five perennial bioenergy feedstock cropping systems: (1) switchgrass (Panicum virgatum L.), (2) giant miscanthus (Miscanthus × giganteus), (3) a native grass mixture (5 species), (4) an early successional field (volunteer herbaceous species), and (5) a restored prairie (18 species). In a randomized complete block design with 5 replicates and 2 split plots, N was applied at 0 and 56 kg ha−1 to split plots for each cropping system from 2010 to 2016. No yield response to N was detected in switchgrass at either location in any year. Giant miscanthus exhibited a positive yield response to N at both sites (11% at KBS and 83% at ARL). Nitrogen fertilizer addition significantly reduced glucose (KBS 12.9 and 13.8 g kg−1 year−1, ARL 11.2 and 9.7 g kg−1 year−1) in the native grass mix and restored prairie systems respectively. Nitrogen fertilizer also reduced xylose at KBS in the switchgrasss, native grass mix, and restored prairie (4.9, 7.5, and 5.0 g kg−1 year−1). At ARL, N fertilization reduced xylose levels in switchgrass, giant miscanthus, and restored prairie (7.4, 6.8, and 6.2 g kg−1 year−1) and increased xylose levels in the early successional system (5.0 g kg−1 year−1). 
    more » « less
  5. null (Ed.)
    Abstract Although the hypoxia formation in the Gulf of Mexico is predominantly driven by increased riverine nitrogen (N) export from the Mississippi-Atchafalaya River basin, it remains unclear how hydroclimate extremes affect downstream N loads. Using a process-based hydro-ecological model, we reveal that over 60% of the land area of the Basin has experienced increasing extreme precipitation since 2000, and this area yields over 80% of N leaching loss across the region. Despite occurring in ~9 days year −1 , extreme precipitation events contribute ~1/3 of annual precipitation, and ~1/3 of total N yield on average. Both USGS monitoring and our modeling estimates demonstrate an approximately 30% higher annual N load in the years with extreme river flow than the long-term median. Our model suggests that N load could be reduced by up to 16% merely by modifying fertilizer application timing but increasing contribution of extreme precipitation is shown to diminish this potential. 
    more » « less