Abstract BackgroundEnvironmental fluctuation during embryonic and fetal development can permanently alter an organism’s morphology, physiology, and behaviour. This phenomenon, known as developmental plasticity, is particularly relevant to reptiles that develop in subterranean nests with variable oxygen tensions. Previous work has shown hypoxia permanently alters the cardiovascular system of snapping turtles and may improve cardiac anoxia tolerance later in life. The mechanisms driving this process are unknown but may involve epigenetic regulation of gene expression via DNA methylation. To test this hypothesis, we assessed in situ cardiac performance during 2 h of acute anoxia in juvenile turtles previously exposed to normoxia (21% oxygen) or hypoxia (10% oxygen) during embryogenesis. Next, we analysed DNA methylation and gene expression patterns in turtles from the same cohorts using whole genome bisulfite sequencing, which represents the first high-resolution investigation of DNA methylation patterns in any reptilian species. ResultsGenome-wide correlations between CpG and CpG island methylation and gene expression patterns in the snapping turtle were consistent with patterns observed in mammals. As hypothesized, developmental hypoxia increased juvenile turtle cardiac anoxia tolerance and programmed DNA methylation and gene expression patterns. Programmed differences in expression of genes such asSCN5Amay account for differences in heart rate, while genes such asTNNT2andTPM3may underlie differences in calcium sensitivity and contractility of cardiomyocytes and cardiac inotropy. Finally, we identified putative transcription factor-binding sites in promoters and in differentially methylated CpG islands that suggest a model linking programming of DNA methylation during embryogenesis to differential gene expression and cardiovascular physiology later in life. Binding sites for hypoxia inducible factors (HIF1A, ARNT, and EPAS1) and key transcription factors activated by MAPK and BMP signaling (RREB1 and SMAD4) are implicated. ConclusionsOur data strongly suggests that DNA methylation plays a conserved role in the regulation of gene expression in reptiles. We also show that embryonic hypoxia programs DNA methylation and gene expression patterns and that these changes are associated with enhanced cardiac anoxia tolerance later in life. Programming of cardiac anoxia tolerance has major ecological implications for snapping turtles, because these animals regularly exploit anoxic environments throughout their lifespan.
more »
« less
Developmental programming of sarcoplasmic reticulum function improves cardiac anoxia tolerance in turtles
ABSTRACT Oxygen deprivation during embryonic development can permanently remodel the vertebrate heart, often causing cardiovascular abnormalities in adulthood. While this phenomenon is mostly damaging, recent evidence suggests developmental hypoxia produces stress-tolerant phenotypes in some ectothermic vertebrates. Embryonic common snapping turtles (Chelydra serpentina) subjected to chronic hypoxia display improved cardiac anoxia tolerance after hatching, which is associated with altered Ca2+ homeostasis in heart cells (cardiomyocytes). Here, we examined the possibility that changes in Ca2+ cycling, through the sarcoplasmic reticulum (SR), underlie the developmentally programmed cardiac phenotype of snapping turtles. We investigated this hypothesis by isolating cardiomyocytes from juvenile turtles that developed in either normoxia (21% O2; ‘N21’) or chronic hypoxia (10% O2; ‘H10’) and subjected the cells to anoxia/reoxygenation, in either the presence or absence of SR Ca2+-cycling inhibitors. We simultaneously measured cellular shortening, intracellular Ca2+ concentration ([Ca2+]i), and intracellular pH (pHi). Under normoxic conditions, N21 and H10 cardiomyocytes shortened equally, but H10 Ca2+ transients (Δ[Ca2+]i) were twofold smaller than those of N21 cells, and SR inhibition only decreased N21 shortening and Δ[Ca2+]i. Anoxia subsequently depressed shortening, Δ[Ca2+]i and pHi in control N21 and H10 cardiomyocytes, yet H10 shortening and Δ[Ca2+]i recovered to pre-anoxic levels, partly due to enhanced myofilament Ca2+ sensitivity. SR blockade abolished the recovery of anoxic H10 cardiomyocytes and potentiated decreases in shortening, Δ[Ca2+]i and pHi. Our novel results provide the first evidence of developmental programming of SR function and demonstrate that developmental hypoxia confers a long-lasting, superior anoxia-tolerant cardiac phenotype in snapping turtles, by modifying SR function and enhancing myofilament Ca2+ sensitivity.
more »
« less
- Award ID(s):
- 1755187
- PAR ID:
- 10590599
- Publisher / Repository:
- The Company of Biologists
- Date Published:
- Journal Name:
- Journal of Experimental Biology
- Volume:
- 227
- Issue:
- 20
- ISSN:
- 0022-0949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Long-Term Effects of Developmental Hypoxia on Cardiac Mitochondrial Function in Snapping TurtlesIt is well established that adult vertebrates acclimatizing to hypoxic environments undergo mitochondrial remodeling to enhance oxygen delivery, maintain ATP, and limit oxidative stress. However, many vertebrates also encounter oxygen deprivation during embryonic development. The effects of developmental hypoxia on mitochondrial function are likely to be more profound, because environmental stress during early life can permanently alter cellular physiology and morphology. To this end, we investigated the long-term effects of developmental hypoxia on mitochondrial function in a species that regularly encounters hypoxia during development—the common snapping turtle ( Chelydra serpentina ). Turtle eggs were incubated in 21% or 10% oxygen from 20% of embryonic development until hatching, and both cohorts were subsequently reared in 21% oxygen for 8 months. Ventricular mitochondria were isolated, and mitochondrial respiration and reactive oxygen species (ROS) production were measured with a microrespirometer. Compared to normoxic controls, juvenile turtles from hypoxic incubations had lower Leak respiration, higher P:O ratios, and reduced rates of ROS production. Interestingly, these same attributes occur in adult vertebrates that acclimatize to hypoxia. We speculate that these adjustments might improve mitochondrial hypoxia tolerance, which would be beneficial for turtles during breath-hold diving and overwintering in anoxic environments.more » « less
-
null (Ed.)The present study explores an RNA we have discovered in human heart that induces differentiation of mouse embryonic stem cells and human induced pluripotent stem cells into cardiomyocytes in vitro. We have designated this RNA as Cardiac Inducing RNA or CIR. We now find that CIR also induces mouse embryonic fibroblasts (MEF) to form cardiomyocytes in vitro. For these studies, human-derived CIR is transfected into MEF using lipofectamine. The CIR-transfected mouse fibroblasts exhibit spindle-shaped cells, characteristic of myocardial cells in culture, and express cardiac-specific troponin-T and cardiac tropomyosin. As such, the CIR-induced conversion of the fibroblasts into cardiomyocytes in vitro appears to take place without initial dedifferentiation into pluripotent stem cells. Instead, after CIR transfection using a lipofectamine transfection system, over the next 8 days there appears to be a direct transdifferentiation of ˃80% of the cultured fibroblasts into definitive cardiomyocytes. Fewer than ˂7% of the untreated controls using non-active RNA or lipofectamine by itself show cardiomyocyte characteristics. Thus, discovery of CIR may hold significant potential for future use in repair/regeneration of damaged myocardial tissue in humans after myocardial infarction or other disease processes such that affected patients may be able to return to pre-heart-disease activity levels.more » « less
-
null (Ed.)We have discovered a cardiac-inducing RNA (CIR) in the axolotl, Ambystoma mexicanum, (a salamander) and two cardiac inducing RNAs (CIR-6 and CIR-30) in human heart that have the ability to induce the differentiation of non-muscle cells, including induced pluripotent stem cells from human skin, mouse embryonic stem cells, and mouse fibroblasts into cardiomyocytes in vitro. Although the primary sequences of salamander and human RNAs are not homologous, their secondary structures are very similar and we believe account for their shared unique abilities to promote differentiation of non-muscle cells into definitive cardiomyocytes. We are beginning to explore the potential for repair/regeneration of cardiac muscle in vivo using mouse and rat models with induced acute myocardial infarctions (AMI) to determine if pluripotent stem cells or fibroblasts transfected with the human CIRs or CIRs alone injected into the damaged areas of the hearts can effect repair of the damaged cardiac muscle tissue, and return the infarcted hearts and the AMI animal models to pre-heart-attack function again. If cardiac cells damaged in heart attacks can be replaced with living, functioning cardiomyocytes, patients with heart disease would be able to have normal heart function restored and could return to normal pre-heart-attack activity levels. Understanding how CIR transforms non-muscle cells into vigorously contracting, functional cardiac muscle and effectively replacing damaged heart cells with newly-formed cardiac muscle tissue would represent a major breakthrough in modern biology and medicine with the potential to have a significant impact on the survival rate and quality of life of millions of individuals worldwide who suffer heart attacks each year.more » « less
-
Changes in the environment promote variations in fish physiological responses. Genetic variation also plays a role in physiological variation. To explore the role of genetics in physiological variation, we assessed variation of cardiac function (heart rate, stroke volume, and cardiac output), oxygen consumption, yolk conversion efficiency, and cost of development in embryonic and larval AB wild-type and NHGRI-1 zebrafish (low heterozygosity line backcrossed from AB wild-type) exposed to different temperature and oxygen regimes. Fish were exposed from fertilization to 7 days post-fertilization (dpf) to control conditions (28 °C, 21% O2) or to low temperature (23 °C, 21% O2), high temperature (33 °C, 21% O2), moderate hypoxia (28 °C, 13% O2), or severe hypoxia (28 °C, 10% O2). We hypothesized that (1) assessed physiological variables will respond similarly in both fish lines and (2) data variability in the low heterozygosity NHGRI-1 zebrafish will be lower than in AB zebrafish. Cardiac function decreased at lower temperature and in hypoxia in both AB and NHGRI-1 zebrafish. Oxygen consumption was increased by higher temperature and hypoxia in AB fish and by severe hypoxia in NHGRI-1 fish. Yolk conversion efficiency was decreased by lower temperature and hypoxia in AB fish and increased by higher temperature and decreased by hypoxia in NHGRI-1 fish. Cost of development was higher mainly in hypoxia-treated fish. Supporting our hypothesis that genetics contributes to physiological variation, NHGRI-1 zebrafish data showed significantly lower coefficients of variation in 84% of assessed endpoints. We conclude that (1) there is a strong genetic component to physiological variation in fishes and (2) low heterozygosity NHGRI-1 zebrafish are useful models for reducing the ‘noise’ from genetic backgrounds in physiological research in fish, which may aid interpretation of experimental results and facilitate reproducibility.more » « less
An official website of the United States government

