skip to main content


Search for: All records

Award ID contains: 1755187

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Armoured, rigid bodied animals, such as Testudines, must self-right should they find themselves in an inverted position. The ability to self-right is an essential biomechanical and physiological process that influences survival and ultimately fitness. Traits that enhance righting ability may consequently offer an evolutionary advantage. However, the energetic requirements of self-righting are unknown. Using respirometry and kinematic video analysis, we examined the metabolic cost of self-righting in the terrestrial Mediterranean spur-thighed tortoise and compared this to the metabolic cost of locomotion at a moderate, easily sustainable speed. We found that self-righting is, relatively, metabolically expensive and costs around two times the mass-specific power required to walk. Rapid movements of the limbs and head facilitate successful righting however, combined with the constraints of breathing whilst upside down, contribute a significant metabolic cost. Consequently, in the wild, these animals should favour environments or behaviours where the risk of becoming inverted is reduced.

     
    more » « less
  2. Abstract

    Quantitative functional anatomy of amniote thoracic and abdominal regions is crucial to understanding constraints on and adaptations for facilitating simultaneous breathing and locomotion. Crocodilians have diverse locomotor modes and variable breathing mechanics facilitated by basal and derived (accessory) muscles. However, the inherent flexibility of these systems is not well studied, and the functional specialisation of the crocodilian trunk is yet to be investigated. Increases in body size and trunk stiffness would be expected to cause a disproportionate increase in muscle force demands and therefore constrain the basal costal aspiration mechanism, necessitating changes in respiratory mechanics. Here, we describe the anatomy of the trunk muscles, their properties that determine muscle performance (mass, length and physiological cross‐sectional area [PCSA]) and investigate their scaling in juvenileAlligator mississippiensisspanning an order of magnitude in body mass (359 g–5.5 kg). Comparatively, the expiratory muscles (transversus abdominis,rectus abdominis,iliocostalis), which compress the trunk, have greater relative PCSA being specialised for greater force‐generating capacity, while the inspiratory muscles (diaphragmaticus,truncocaudalis ischiotruncus,ischiopubis), which create negative internal pressure, have greater relative fascicle lengths, being adapted for greater working range and contraction velocity. Fascicle lengths of the accessorydiaphragmaticusscaled with positive allometry in the alligators examined, enhancing contractile capacity, in line with this muscle's ability to modulate both tidal volume and breathing frequency in response to energetic demand during terrestrial locomotion. Theiliocostalis, an accessory expiratory muscle, also demonstrated positive allometry in fascicle lengths and mass. All accessory muscles of the infrapubic abdominal wall demonstrated positive allometry in PCSA, which would enhance their force‐generating capacity. Conversely, the basal tetrapod expiratory pump (transversus abdominis) scaled isometrically, which may indicate a decreased reliance on this muscle with ontogeny. Collectively, these findings would support existing anecdotal evidence that crocodilians shift their breathing mechanics as they increase in size. Furthermore, the functional specialisation of thediaphragmaticusand compliance of the body wall in the lumbar region against which it works may contribute to low‐cost breathing in crocodilians.

     
    more » « less
  3. Free, publicly-accessible full text available August 1, 2024
  4. Developmental hypoxia has profound and persistent effects on the vertebrate cardiovascular system, but the nature, magnitude, and long-term outcome of the hypoxic consequences are species specific. Here we aim to identify common and novel cardiovascular responses among vertebrates that encounter developmental hypoxia, and we discuss the possible medical and ecological implications. 
    more » « less
  5. Developmental oxygen is a powerful stressor that can induce morphological and functional changes in the cardiovascular systems of embryonic and juvenile vertebrates. This plasticity has been ascribed, at least in part, to the unique status of the developing cardiovascular system, which undergoes organogenesis while meeting the tissue oxygen demands of the embryo. We have previously reported an array of functional and morphological changes in embryonic American alligators that persist into juvenile life. Most notably, cardiac enlargement as well as functional parameters of anesthetized juvenile alligators remains after embryonic hypoxic exposure. Because the effects of developmental oxygen in crocodilians have only been investigated in anesthetized animals, we explored the pressure dynamics of both ventricles as well as systemic pressure in response to stressors of acute hypoxia and swimming. Our current findings demonstrate that developmental programming of cardiac function (intraventricular pressure and heart rate) does persist into juvenile life, but it is chamber-specific and depends on the experimental manipulation. Acute hypoxic exposure revealed that juvenile alligators that had experienced 10% O 2 as embryos maintain right ventricle function and increase left ventricle function during exposure. Finally, the data indicate blood flow in the left aorta must originate from the left ventricle during acute hypoxia and swimming. 
    more » « less
  6. Tortoises are famed for their slow locomotion, which is in part related to their herbivorous diet and the constraints imposed by their protective shells. For most animals, the metabolic cost of transport (CoT) is close to the value predicted for their body mass. Testudines appear to be an exception to this rule, as previous studies indicate that, for their body mass, they are economical walkers. The metabolic efficiency of their terrestrial locomotion is explainable by their walking gait biomechanics and the specialisation of their limb muscle physiology, which embodies a predominance of energy-efficient slow-twitch type I muscle fibres. However, there are only two published experimental reports of the energetics of locomotion in tortoises, and these data show high variability. Here, Mediterranean spur-thighed tortoises (Testudo graeca) were trained to walk on a treadmill. Open-flow respirometry and high-speed filming were simultaneously used to measure the metabolic cost of transport and to quantify limb kinematics, respectively. Our data support the low cost of transport previously reported and demonstrate a novel curvilinear relationship to speed in Testudines, suggesting tortoises have an energetically optimal speed range over which they can move in order to minimise the metabolic cost of transport. 
    more » « less
  7. Most animals elevate cardiac output during exercise through a rise in heart rate ( f H ), whereas stroke volume (V S ) remains relatively unchanged. Cardiac pacing reveals that elevating f H alone does not alter cardiac output, which is instead largely regulated by the peripheral vasculature. In terms of myocardial oxygen demand, an increase in f H is more costly than that which would incur if V S instead were to increase. We hypothesized that f H must increase because any substantial rise in V S would be constrained by the pericardium. To investigate this hypothesis, we explored the effects of pharmacologically induced bradycardia, with ivabradine treatment, on V S at rest and during exercise in the common snapping turtle ( Chelydra serpentina) with intact or opened pericardium. We first showed that, in isolated myocardial preparations, ivabradine exerted a pronounced positive inotropic effect on atrial tissue but only minor effects on ventricle. Ivabradine reduced f H in vivo, such that exercise tachycardia was attenuated. Pulmonary and systemic V S rose in response to ivabradine. The rise in pulmonary V S largely compensated for the bradycardia at rest, leaving total pulmonary flow unchanged by ivabradine, although ivabradine reduced pulmonary blood flow during swimming (exercise × ivabradine interaction, P < 0.05). Although systemic V S increased, systemic blood flow was reduced by ivabradine both at rest and during exercise, despite ivabradine’s potential to increase cardiac contractility. Opening the pericardium had no effect on f H , V S , or blood flows before or after ivabradine, indicating that the pericardium does not constrain VS in turtles, even during pharmacologically induced bradycardia. 
    more » « less
  8. It is well established that adult vertebrates acclimatizing to hypoxic environments undergo mitochondrial remodeling to enhance oxygen delivery, maintain ATP, and limit oxidative stress. However, many vertebrates also encounter oxygen deprivation during embryonic development. The effects of developmental hypoxia on mitochondrial function are likely to be more profound, because environmental stress during early life can permanently alter cellular physiology and morphology. To this end, we investigated the long-term effects of developmental hypoxia on mitochondrial function in a species that regularly encounters hypoxia during development—the common snapping turtle ( Chelydra serpentina ). Turtle eggs were incubated in 21% or 10% oxygen from 20% of embryonic development until hatching, and both cohorts were subsequently reared in 21% oxygen for 8 months. Ventricular mitochondria were isolated, and mitochondrial respiration and reactive oxygen species (ROS) production were measured with a microrespirometer. Compared to normoxic controls, juvenile turtles from hypoxic incubations had lower Leak respiration, higher P:O ratios, and reduced rates of ROS production. Interestingly, these same attributes occur in adult vertebrates that acclimatize to hypoxia. We speculate that these adjustments might improve mitochondrial hypoxia tolerance, which would be beneficial for turtles during breath-hold diving and overwintering in anoxic environments. 
    more » « less
  9. null (Ed.)