skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A targeted CRISPR-Cas9 mediated F0 screen identifies genes involved in establishment of the enteric nervous system
The vertebrate enteric nervous system (ENS) is a crucial network of enteric neurons and glia resident within the entire gastrointestinal tract (GI). Overseeing essential GI functions such as gut motility and water balance, the ENS serves as a pivotal bidirectional link in the gut-brain axis. During early development, the ENS is primarily derived from enteric neural crest cells (ENCCs). Disruptions to ENCC development, as seen in conditions like Hirschsprung disease (HSCR), lead to the absence of ENS in the GI, particularly in the colon. In this study, using zebrafish, we devised anin vivoF0 CRISPR-based screen employing a robust, rapid pipeline integrating single-cell RNA sequencing, CRISPR reverse genetics, and high-content imaging. Our findings unveil various genes, including those encoding opioid receptors, as possible regulators of ENS establishment. In addition, we present evidence that suggests opioid receptor involvement in the neurochemical coding of the larval ENS. In summary, our work presents a novel, efficient CRISPR screen targeting ENS development, facilitating the discovery of previously unknown genes, and increasing knowledge of nervous system construction.  more » « less
Award ID(s):
1942019
PAR ID:
10590608
Author(s) / Creator(s):
; ;
Editor(s):
Grinblat, Yevgenya
Publisher / Repository:
PLOS
Date Published:
Journal Name:
PLOS ONE
Volume:
19
Issue:
5
ISSN:
1932-6203
Page Range / eLocation ID:
e0303914
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The enteric nervous system (ENS) is the intrinsic nervous system of the gut and controls essential functions, such as gut motility, intestinal barrier function, and water balance. The ENS displays a complex 3D architecture within the context of the gut and specific transcriptional states needed to control gut homeostasis. During development, the ENS develops from enteric neural progenitor cells (ENPs) that migrate into the gut and differentiate into functionally diverse neuron types. Incorrect ENS development can disrupt ENS function and induce various gut disorders, including the congenital disease Hirschsprung disease, or various other functional gut neurological disorders, such as esophageal achalasia. In this study, we used the zebrafish larval model and performed whole gut spatial genomic analysis (SGA) of the differentiating ENS at cellular resolution. To that end, a pipeline was developed that integrated early and late developmental ENS stages by linking various spatial and transcriptional dimensions to discover regionalized cellular groups and their co-expression similarity. We identified 3D networks of intact ENS surrounding the gut and predicted cellular connectivity properties based on the stage. Spatial variable genes, such ashoxb5b,hoxa4a,etv1, andret, were regionalized along gut axes, suggesting they may have a precise spatiotemporal control of ENS development. The application of SGA to ENS development provides new insights into its cellular transcriptional networks and interactions, and provides a baseline data set to further advance our understanding of gut neurodevelopmental disorders such as Hirschsprung disease and congenital enteric neuropathies. 
    more » « less
  2. Abstract BackgroundThe vertebrate enteric nervous system (ENS) consists of a series of interconnected ganglia within the gastrointestinal (GI) tract, formed during development following migration of enteric neural crest cells (ENCCs) into the primitive gut tube. Much work has been done to unravel the complex nature of extrinsic and intrinsic factors that regulate processes that direct migration, proliferation, and differentiation of ENCCs. However, ENS development is a complex process, and we still have much to learn regarding the signaling factors that regulate ENCC development. ResultsHere in zebrafish, through transcriptomic, in situ transcript expression, immunohistochemical analysis, and chemical attenuation, we identified a time‐dependent role for bone morphogenetic protein (BMP) in the maintenance of Phox2bb+enteric progenitor numbers and/or time of differentiation of the progenitor pool. In support of our in silico transcriptomic analysis, we identified expression of a novel ENS ligand‐encoding transcript,bmp5, within developmental regions of ENCCs. Through generation of a novel mutantbmp5wmr2andbmp5crispants, we identified a functional role for BMP5 in proper GI tract colonization, wherebyphox2bb+enteric progenitor numbers were reduced. ConclusionAltogether, this work identified time‐dependent roles for BMP signaling and a novel extrinsic factor, BMP5, that is necessary for vertebrate ENS formation. 
    more » « less
  3. The enteric nervous system (ENS) is a complex series of interconnected neurons and glia that reside within and along the entire length of the gastrointestinal tract. ENS functions are vital to gut homeostasis and digestion, including local control of peristalsis, water balance, and intestinal cell barrier function. How the ENS develops during embryological development is a topic of great concern, as defects in ENS development can result in various diseases, the most common being Hirschsprung disease, in which variable regions of the infant gut lack ENS, with the distal colon most affected. Deciphering how the ENS forms from its progenitor cells, enteric neural crest cells, is an active area of research across various animal models. The vertebrate animal model, zebrafish, has been increasingly leveraged to understand early ENS formation, and over the past 20 years has contributed to our knowledge of the genetic regulation that underlies enteric development. In this review, I summarize our knowledge regarding the genetic regulation of zebrafish enteric neuronal development, and based on the most current literature, present a gene regulatory network inferred to underlie its construction. I also provide perspectives on areas for future zebrafish ENS research. 
    more » « less
  4. The enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal tract (GI) and regulates important GI functions, including motility, nutrient uptake, and immune response. The development of the ENS begins during early organogenesis and continues to develop once feeding begins, with ongoing plasticity into adulthood. There has been increasing recognition that the intestinal microbiota and ENS interact during critical periods, with implications for normal development and potential disease pathogenesis. In this review, we focus on insights from mouse and zebrafish model systems to compare and contrast how each model can serve in elucidating the bidirectional communication between the ENS and the microbiome. At the end of this review, we further outline implications for human disease and highlight research innovations that can lead the field forward. 
    more » « less
  5. The neural-crest-derived enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal (GI) tract and controls all gut functions, including motility. Lack of ENS neurons causes various ENS disorders such as Hirschsprung Disease. One treatment option for ENS disorders includes the activation of resident stem cells to regenerate ENS neurons. Regeneration in the ENS has mainly been studied in mammalian species using surgical or chemically induced injury methods. These mammalian studies showed a variety of regenerative responses with generally limited regeneration of ENS neurons but (partial) regrowth and functional recovery of nerve fibers. Several aspects might contribute to the variety in regenerative responses, including observation time after injury, species, and gut region targeted. Zebrafish have recently emerged as a promising model system to study ENS regeneration as larvae possess the ability to generate new neurons after ablation. As the next steps in ENS regeneration research, we need a detailed understanding of how regeneration is regulated on a cellular and molecular level in animal models with both high and low regenerative capacity. Understanding the regulatory programs necessary for robust ENS regeneration will pave the way for using neural regeneration as a therapeutic approach to treating ENS disorders. 
    more » « less