Abstract Excitons, bound electron–hole pairs, in two-dimensional hybrid organic inorganic perovskites (2D HOIPs) are capable of forming hybrid light-matter states known as exciton-polaritons (E–Ps) when the excitonic medium is confined in an optical cavity. In the case of 2D HOIPs, they can self-hybridize into E–Ps at specific thicknesses of the HOIP crystals that form a resonant optical cavity with the excitons. However, the fundamental properties of these self-hybridized E–Ps in 2D HOIPs, including their role in ultrafast energy and/or charge transfer at interfaces, remain unclear. Here, we demonstrate that >0.5 µm thick 2D HOIP crystals on Au substrates are capable of supporting multiple-orders of self-hybridized E–P modes. These E–Ps have high Q factors (>100) and modulate the optical dispersion for the crystal to enhance sub-gap absorption and emission. Through varying excitation energy and ultrafast measurements, we also confirm energy transfer from higher energy E–Ps to lower energy E–Ps. Finally, we also demonstrate that E–Ps are capable of charge transport and transfer at interfaces. Our findings provide new insights into charge and energy transfer in E–Ps opening new opportunities towards their manipulation for polaritonic devices.
more »
« less
Symmetry-breaking photoinduced charge transfer state in a near-IR absorbing meso -linked BODIPY dimer
This TOC represents the Polarity dependent charge separation of BODIPY dimer (3D). The charge transfer lifetime (1 ps for MeOH and 0.5 ps for DMF) has been confirmed using femtosecond transient absorption spectroscopy.
more »
« less
- Award ID(s):
- 2349051
- PAR ID:
- 10590618
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- ISSN:
- 1463-9076
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Rubber toughening of glassy polystyrene (PS) has been manufactured commercially for decades as high impact polystyrene, where rubbery poly‐butadiene (PB) inclusions are added to modify the PS matrix response to deformation and impact. In this study, measurements of the local glass transition temperatureTg(z) of PS next to PB rubber are presented, expanding the previous data to a polymer with a much lowerTgvalue (PBTgbulk= −96 °C). After accounting for a small molecule additive present in the commercial PB sample that would otherwise migrate over to the PS domain causing plasticization, it is found that theTg(z) profile in PS next to PB is consistent with previous results. It is also demonstrated that these broad and asymmetric experimentally observedTg(z) profiles are not caused by the migration of low molecular weight chains across the interface by comparing samples made with two different poly(n‐butyl methacrylate) molecular weights.more » « less
-
The electronic communication between two ferrocene groups in the electron-deficient expanded aza-BODIPY analogue of zinc manitoba-dipyrromethene (MB-DIPY) was probed by spectroscopic, electrochemical, spectroelectrochemical, and theoretical methods. The excited-state dynamics involved sub- ps formation of the charge-separated state in the organometallic zinc MB-DIPYs, followed by recovery of the ground state via charge recombination in 12 ps. The excited-state behavior was contrasted with that observed in the parent complex that lacked the ferrocene electron donors and has a much longer excited-state lifetime (670 ps for the singlet state). Much longer decay times observed for the parent complex without ferrocene confirm that the main quenching mechanism in the ferrocene-containing 4 is reflective of the ultrafast ferrocene-to-MB-DIPY core charge transfer (CTmore » « less
-
Abstract All‐solid‐state rechargeable sodium (Na)‐ion batteries are promising for inexpensive and high‐energy‐density large‐scale energy storage. In this contribution, new Na solid electrolytes, Na3−yPS4−xClx, are synthesized with a strategic approach, which allows maximum substitution of Cl for S (x= 0.2) without significant compromise of structural integrity or Na deficiency. A maximum conductivity of 1.96 mS cm−1at 25 °C is achieved for Na3.0PS3.8Cl0.2, which is two orders of magnitude higher compared with that of tetragonal Na3PS4(t‐Na3PS4). The activation energy (Ea) is determined to be 0.19 eV. Ab initio molecular dynamics simulations shed light on the merit of maximizing Cl‐doping while maintaining low Na deficiency in enhanced Na‐ion conduction. Solid‐state nuclear magnetic resonance (NMR) characterizations confirm the successful substitution of Cl for S and the resulting change of P oxidation state from 5+ to 4+, which is also verified by spin moment analysis. Ion transport pathways are determined with a tracer‐exchange NMR method. The functional detects that promote Na ‐ion transport are maximized for further improvement in ionic conductivity. Full‐cell performance is demonstrated using Na/Na3.0PS3.8Cl0.2/Na3V2(PO4)3with a reversible capacity of ≈100 mAh g‐1at room temperature.more » « less
-
Abstract A far‐red absorbing sensitizer, BF2‐chelated azadipyrromethane (azaBODIPY) has been employed as an electron acceptor to synthesize a series of push‐pull systems linked with different nitrogenous electron donors, viz.,N,N‐dimethylaniline (NND), triphenylamine (TPA), and phenothiazine (PTZ) via an acetylene linker. The structural integrity of the newly synthesized push‐pull systems was established by spectroscopic, electrochemical, spectroelectrochemical, and DFT computational methods. Cyclic and differential pulse voltammetry studies revealed different redox states and helped in the estimation of the energies of the charge‐separated states. Further, spectroelectrochemical studies performed in a thin‐layer optical cell revealed diagnostic peaks of azaBODIPY⋅−in the visible and near‐IR regions. Free‐energy calculations revealed the charge separation from one of the covalently linked donors to the1azaBODIPY* to yield Donor⋅+‐azaBODIPY⋅−to be energetically favorable in a polar solvent, benzonitrile, and the frontier orbitals generated on the optimized structures helped in assessing such a conclusion. Consequently, the steady‐state emission studies revealed quenching of the azaBODIPY fluorescence in all of the investigated push‐pull systems in benzonitrile and to a lesser extent in mildly polar dichlorobenzene, and nonpolar toluene. The femtosecond pump‐probe studies revealed the occurrence of excited charge transfer (CT) in nonpolar toluene while a complete charge separation (CS) for all three push‐pull systems in polar benzonitrile. The CT/CS products populated the low‐lying3azaBODIPY* prior to returning to the ground state. Global target (GloTarAn) analysis of the transient data revealed the lifetime of the final charge‐separated states (CSS) to be 195 ps for NND‐derived, 50 ps for TPA‐derived, and 85 ps for PTZ‐derived push‐pull systems in benzonitrile.more » « less
An official website of the United States government

