skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamics of self-hybridized exciton–polaritons in 2D halide perovskites
Abstract Excitons, bound electron–hole pairs, in two-dimensional hybrid organic inorganic perovskites (2D HOIPs) are capable of forming hybrid light-matter states known as exciton-polaritons (E–Ps) when the excitonic medium is confined in an optical cavity. In the case of 2D HOIPs, they can self-hybridize into E–Ps at specific thicknesses of the HOIP crystals that form a resonant optical cavity with the excitons. However, the fundamental properties of these self-hybridized E–Ps in 2D HOIPs, including their role in ultrafast energy and/or charge transfer at interfaces, remain unclear. Here, we demonstrate that >0.5 µm thick 2D HOIP crystals on Au substrates are capable of supporting multiple-orders of self-hybridized E–P modes. These E–Ps have high Q factors (>100) and modulate the optical dispersion for the crystal to enhance sub-gap absorption and emission. Through varying excitation energy and ultrafast measurements, we also confirm energy transfer from higher energy E–Ps to lower energy E–Ps. Finally, we also demonstrate that E–Ps are capable of charge transport and transfer at interfaces. Our findings provide new insights into charge and energy transfer in E–Ps opening new opportunities towards their manipulation for polaritonic devices.  more » « less
Award ID(s):
2103673 1950720 1845009
PAR ID:
10483460
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Light: Science & Applications
Volume:
13
Issue:
1
ISSN:
2047-7538
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Charge-transfer excitons are formed by photoexcited electrons and holes following charge transfer across a heterojunction. They are important quasiparticles for optoelectronic applications of semiconducting heterostructures. The newly developed two-dimensional heterostructures provide a new platform to study these excitons. We report spatially and temporally resolved transient absorption measurements on the dynamics of charge-transfer excitons in a MoS 2 /WS 2 /MoSe 2 trilayer heterostructure. We observed a non-classical lateral diffusion process of charge-transfer excitons with a decreasing diffusion coefficient. This feature suggests that hot charge-transfer excitons with large kinetic energies are formed and their cooling process persists for about 100 ps. The long energy relaxation time of excitons in the trilayer compared to its monolayer components is attributed to the reduced carrier and phonon scattering due to the dielectric screening effect in the trilayer. Our results help develop an in-depth understanding of the dynamics of charge-transfer excitons in two-dimensional heterostructures. 
    more » « less
  2. Abstract Tightly bound electron-hole pairs (excitons) hosted in atomically-thin semiconductors have emerged as prospective elements in optoelectronic devices for ultrafast and secured information transfer. The controlled exciton transport in such excitonic devices requires manipulating potential energy gradient of charge-neutral excitons, while electrical gating or nanoscale straining have shown limited efficiency of exciton transport at room temperature. Here, we report strain gradient induced exciton transport in monolayer tungsten diselenide (WSe2) across microns at room temperature via steady-state pump-probe measurement. Wrinkle architecture enabled optically-resolvable local strain (2.4%) and energy gradient (49 meV/μm) to WSe2. We observed strain gradient induced flux of high-energy excitons and emission of funneled, low-energy excitons at the 2.5 μm-away pump point with nearly 45% of relative emission intensity compared to that of excited excitons. Our results strongly support the strain-driven manipulation of exciton funneling in two-dimensional semiconductors at room temperature, opening up future opportunities of 2D straintronic exciton devices. 
    more » « less
  3. Excitons in monolayer semiconductors have a large optical transition dipole for strong coupling with light. Interlayer excitons in heterobilayers feature a large electric dipole that enables strong coupling with an electric field and exciton-exciton interaction at the cost of a small optical dipole. We demonstrate the ability to create a new class of excitons in hetero- and homobilayers that combines advantages of monolayer and interlayer excitons, i.e., featuring both large optical and electric dipoles. These excitons consist of an electron confined in an individual layer, and a hole extended in both layers, where the carrier-species–dependent layer hybridization can be controlled through rotational, translational, band offset, and valley-spin degrees of freedom. We observe different species of layer-hybridized valley excitons, which can be used for realizing strongly interacting polaritonic gases and optical quantum controls of bidirectional interlayer carrier transfer. 
    more » « less
  4. Abstract To assess the potential optoelectronic applications of metal‐halide perovskites, it is critical to have a detailed understanding of the nature and dynamics of interactions between carriers and the polar lattices. Here, the electronic and structural dynamics of bismuth‐based perovskite Cs3Bi2I9are revealed by transient reflectivity and ultrafast electron diffraction. A cross‐examination of these results combined with theoretical analyses allows the identification of the major carrier–phonon coupling mechanism and the associated time scales. It is found that carriers photoinjected into Cs3Bi2I9form self‐trapped excitons on an ultrafast time scale. However, they retain most of their energy, and their coupling to Fröhlich‐type optical phonons is limited at early times. Instead, the long‐lived excitons exert an electronic stress via deformation potential and develop a prominent, sustaining strain field as coherent acoustic phonons in 10 ps. From sub‐ps to ns and beyond, a similar extent of the atomic displacements is found throughout the different stages of structural distortions, from limited local modulations to a coherent strain field to the Debye–Waller random atomic motions on longer times. The current results suggest the potential use of bismuth‐based perovskites for applications other than photovoltaics to take advantage of the carriers’ stronger self‐trapping and long lifetimes. 
    more » « less
  5. Controlling matter at the level of electrons using ultrafast laser sources represents an important challenge for science and technology. Recently, we introduced a general laser control scheme (the Stark control of electrons at interfaces or SCELI) based on the Stark effect that uses the subcycle structure of light to manipulate electron dynamics at semiconductor interfaces [A. Garzón-Ramírez and I. Franco, Phys. Rev. B 98, 121305 (2018)]. Here, we demonstrate that SCELI is also of general applicability in molecule–semiconductor interfaces. We do so by following the quantum dynamics induced by non-resonant few-cycle laser pulses of intermediate intensity (non-perturbative but non-ionizing) across model molecule–semiconductor interfaces of varying level alignments. We show that SCELI induces interfacial charge transfer regardless of the energy level alignment of the interface and even in situations where charge exchange is forbidden via resonant photoexcitation. We further show that the SCELI rate of charge transfer is faster than those offered by resonant photoexcitation routes as it is controlled by the subcycle structure of light. The results underscore the general applicability of SCELI to manipulate electron dynamics at interfaces on ultrafast timescales. 
    more » « less