Quantitative reasoning (QR) is the ability to apply mathematics and statistics in the context of real-life situations and scientific problems. It is an important skill that students require to make sense of complex biological phenomena and handle large datasets in biology courses and research as well as in professional contexts. Biology educators and researchers are responding to the increasing need for QR through curricular reforms and research into biology education. This qualitative study investigates how undergraduate biology instructors implement QR into their teaching. The study used pedagogical content knowledge (PCK) and a QR framework to explore instructors’ instructional goals, strategies, and perceived challenges and affordances in undergraduate biology instruction. The participants included 21 biology faculty across various institutions in the United States, who intentionally integrated QR in their instruction. Semi-structured interviews were used to collect data focusing on participants’ beliefs, experiences, and classroom practices. Findings indicated that instructors adapt their QR instruction based on course level and student preparedness. In lower-division courses, strategies emphasized building foundational skills, reducing math anxiety, and using scaffolded instruction to promote confidence. In upper-division courses, instructors expected greater math fluency but still encountered a wide range of student abilities, prompting a focus on correcting misconceptions in integrating math knowledge and fostering deeper conceptual understanding in biology. Many instructors reported that their personal and educational experiences, especially struggles with math, often shaped their inclusive and empathetic teaching practices. Additionally, instructors’ research backgrounds influenced instructional design, particularly in the use of authentic data, statistical tools, and real-world applications. Instructors’ teaching experiences led to refinement in lesson planning, pacing, and active learning strategies. Despite their efforts, instructors faced both internal and external challenges in implementing QR, including discomfort with teaching math, time limitations, student resistance, and institutional barriers. However, affordances such as departmental support, interdisciplinary collaboration, and curricular flexibility helped to overcome some of these challenges. This study highlights the complex relationships between instructors’ experiences, beliefs, and contextual factors in shaping QR instruction. This calls for professional development that supports reflective practice, builds interdisciplinary competence, and promotes instructional strategies that bridge biology and mathematics and will help instructors design a learning environment that better support students’ development of QR skills. These findings offer valuable guidance for professional development aimed at helping biology instructors incorporate quantitative reasoning into their teaching. Such efforts can better equip students to meet the quantitative demands of modern biology and promote their continued engagement in STEM fields through more inclusive and integrated instructional approaches.
more »
« less
This content will become publicly available on December 1, 2025
“It's been a Process”: A Multiple Case Study of Biology Instructor Efforts to Reform their Sex and Gender Curriculum to be More Inclusive of Students with Queer Genders and Intersex Students
We interviewed four undergraduate biology instructors who reformed their curriculum to include queer gender and intersex inclusive strategies. We found that instructors focused on changing language, often removing sexed or gendered language, and used a variety of inclusive activities in their undergraduate biology classroom.
more »
« less
- PAR ID:
- 10590866
- Editor(s):
- Lo, Stanley
- Publisher / Repository:
- ASCB
- Date Published:
- Journal Name:
- CBE—Life Sciences Education
- Volume:
- 23
- Issue:
- 4
- ISSN:
- 1931-7913
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Li, Yeping (Ed.)Abstract The next generations of science, technology, engineering, and math (STEM) workers are being trained in college and university classrooms by a workforce of instructors who learn pedagogical practice largely on the job. While inclusive instructional practices and their impacts are increasingly well-studied, this training is difficult to instill within the professional development that most STEM professors receive before teaching their students. The Science Teaching Experience Program for Upcoming PhDs (STEP-UP) at the University of Washington was built to prepare future professors for inclusive excellence by guiding them through the literature in education research and providing them a space to practice active and inclusive teaching techniques. This study of STEP-UP uses a design-based approach to understand graduate trainee and undergraduate perceptions of the most salient aspects and outcomes of the program. Our study found that trainees used opportunities to practice inclusive teaching methods with a cohort of their peers, and crucially that these methods were evident in trainee-taught courses through multiple lines of evidence. STEP-UP-trained instructors used inclusive teaching strategies that helped students to feel socioemotionally supported. This study offers a model program that fosters inclusion and equity in undergraduate STEM classrooms through improving teaching professional development for graduate students.more » « less
-
Understanding the relationship between science and society is an objective of science education and is included as a core competency in the AAAS Vision and Change guidelines for biology education. However, traditional undergraduate biology instruction emphasizes scientific practice and generally avoids potentially controversial issues at the intersection of biology and society. By including these topics in biology coursework, instructors can challenge damaging ideologies and systemic inequalities that have influenced science, such as biological essentialism and health disparities. Specifically, an ideologically aware curriculum highlights how ideologies and paradigms shape our biological knowledge base and the application of that knowledge. Ideologically aware lessons emphasize the relationship between science and society with an aim to create more transparent, scientifically accurate, and inclusive postsecondary biology classrooms. Here we expand upon our ideologically aware curriculum with a new activity that challenges undergraduate biology students to consider the impacts of healthcare disparities. This lesson allows instructors to directly address systemic inequalities and allows students to connect biomedical sciences to real-world issues. Implementing an ideologically aware curriculum enables students to challenge prevailing worldviews and better address societal problems that lead to exclusion and oppression.more » « less
-
Abstract Understanding the relationship between science and society is an objective of science education and is included as a core competency in the AAAS Vision and Change guidelines for biology education. However, traditional undergraduate biology instruction emphasizes scientific practice and generally avoids potentially controversial issues at the intersection of biology and society. By including these topics in biology coursework, instructors can challenge damaging ideologies and systemic inequalities that have influenced science, such as biological essentialism and health disparities. Specifically, an ideologically aware curriculum highlights how ideologies and paradigms shape our biological knowledge base and the application of that knowledge. Ideologically aware lessons emphasize the relationship between science and society with an aim to create more transparent, scientifically accurate, and inclusive postsecondary biology classrooms. Here we expand upon our ideologically aware curriculum with a new activity that challenges undergraduate biology students to consider the impacts of healthcare disparities. This lesson allows instructors to directly address systemic inequalities and allows students to connect biomedical sciences to real-world issues. Implementing an ideologically aware curriculum enables students to challenge prevailing worldviews and better address societal problems that lead to exclusion and oppression.more » « less
-
Maloy, Stanley (Ed.)ABSTRACT In undergraduate life sciences education, open educational resources (OERs) increase accessibility and retention for students, reduce costs, and save instructors time and effort. Despite increasing awareness and utilization of these resources, OERs are not centrally located, and many undergraduate instructors describe challenges in locating relevant materials for use in their classes. To address this challenge, we have designed a resource collection (referred to as Open Resources for Biology Education, ORBE) with 89 unique resources that are primarily relevant to undergraduate life sciences education. To identify the resources in ORBE, we asked undergraduate life sciences instructors to list what OERs they use in their teaching and curated their responses. Here, we summarize the contents of the ORBE and describe how educators can use this resource as a tool to identify suitable materials to use in their classroom context. By highlighting the breadth of unique resources openly available for undergraduate biology education, we intend for the ORBE to increase instructors’ awareness and use of OERs.more » « less
An official website of the United States government
