skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 21, 2026

Title: Cosmological Predictions for Minor Axis Stellar Density Profiles in the Inner Regions of Milky Way–mass Galaxies
Abstract ΛCDM cosmology predicts the hierarchical formation of galaxies, which build up mass by merger events and accreting smaller systems. The stellar halo of the Milky Way (MW) has proven to be useful a tool for tracing this accretion history. However, most of this work has focused on the outer halo where dynamical times are large and the dynamical properties of accreted systems are preserved. In this work, we investigate the inner galaxy regime, where dynamical times are relatively small and systems are generally completely phase mixed. Using the FIRE-2 and Auriga cosmological zoom-in simulation suites of MW-mass galaxies, we find the stellar density profiles along the minor axis (perpendicular to the galactic disk) within the Navarro–Frenk–White scale radii (R ≈ 15 kpc) are best described as an exponential disk with scale height < 0.3 kpc and a power-law component with slopeα ≈ −4. The stellar density amplitude and slope for the power-law component are not significantly correlated with metrics of the galaxy’s accretion history. Instead, we find the stellar profiles strongly correlate with the dark matter profile. Across simulation suites, the galaxies studied in this work have a stellar-to-dark-matter mass ratio that decreases as 1/r2along the minor axis.  more » « less
Award ID(s):
2303831
PAR ID:
10590890
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
982
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
87
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The shape and orientation of dark matter (DM) halos are sensitive to the microphysics of the DM particles, yet in many mass models, the symmetry axes of the Milky Way’s DM halo are often assumed to be aligned with the symmetry axes of the stellar disk. This is well motivated for the inner DM halo, but not for the outer halo. We use zoomed-in cosmological baryonic simulations from the Latte suite of FIRE-2 Milky Way–mass galaxies to explore the evolution of the DM halo’s orientation with radius and time, with or without a major merger with a Large Magellanic Cloud analog, and when varying the DM model. In three of the four cold DM halos we examine, the orientation of the halo minor axis diverges from the stellar disk vector by more than 20° beyond about 30 galactocentric kpc, reaching a maximum of 30°–90°, depending on the individual halo’s formation history. In identical simulations using a model of self-interacting DM withσ= 1 cm2g−1, the halo remains aligned with the stellar disk out to ∼200–400 kpc. Interactions with massive satellites (M≳ 4 × 1010Mat pericenter;M≳ 3.3 × 1010Mat infall) affect the orientation of the halo significantly, aligning the halo’s major axis with the satellite galaxy from the disk to the virial radius. The relative orientation of the halo and disk beyond 30 kpc is a potential diagnostic of self-interacting DM, if the effects of massive satellites can be accounted for. 
    more » « less
  2. ABSTRACT Using deep images from the Hyper Suprime-Cam (HSC) survey and taking advantage of its unprecedented weak lensing capabilities, we reveal a remarkably tight connection between the stellar mass distribution of massive central galaxies and their host dark matter halo mass. Massive galaxies with more extended stellar mass distributions tend to live in more massive dark matter haloes. We explain this connection with a phenomenological model that assumes, (1) a tight relation between the halo mass and the total stellar content in the halo, (2) that the fraction of in situ and ex situ mass at r <10 kpc depends on halo mass. This model provides an excellent description of the stellar mass functions (SMFs) of total stellar mass ($$M_{\star }^{\mathrm{max}}$$) and stellar mass within inner 10 kpc ($$M_{\star }^{10}$$) and also reproduces the HSC weak lensing signals of massive galaxies with different stellar mass distributions. The best-fitting model shows that halo mass varies significantly at fixed total stellar mass (as much as 0.4 dex) with a clear dependence on $$M_{\star }^{10}$$. Our two-parameter $$M_{\star }^{\mathrm{max}}$$–$$M_{\star }^{10}$$ description provides a more accurate picture of the galaxy–halo connection at the high-mass end than the simple stellar–halo mass relation (SHMR) and opens a new window to connect the assembly history of haloes with those of central galaxies. The model also predicts that the ex situ component dominates the mass profiles of galaxies at r < 10 kpc for log M⋆ ≥ 11.7. The code used for this paper is available online https://github.com/dr-guangtou/asap 
    more » « less
  3. The stellar halos of galaxies, primarily formed through the accretion and merger of smaller objects, are an important tool for understanding the hierarchical mass assembly of galaxies. However, the inner regions of stellar halos in disk galaxies are predicted to have an in situ component that is expected to be prominent along the major axis. Kinematic information is crucial to disentangle the contribution of the in situ component from the accreted stellar halos. The low surface brightness of stellar halos makes it inaccessible with traditional integrated light spectroscopy. In this work, we used a novel technique to study the kinematics of the stellar halo of the edge-on galaxy NGC 4945. We couple new deep Multi Unit Spectroscopic Explorer spectroscopic observations with existingHubbleSpace Telescope imaging data to spectroscopically measure the line-of-sight (LOS) heliocentric velocity and velocity dispersion in two fields at a galactocentric distance of 12.2 kpc (outer disk field) and 34.6 kpc (stellar halo field) along the NGC 4945 major axis, by stacking individual spectra of red giant branch and asymptotic giant branch stars. We obtained a LOS velocity and dispersion of 673 ± 11 km s−1and 73 ± 14 km s−1, respectively, for the outer disk field. This is consistent with the mean HI velocity of the disk at that distance. For the halo field, we obtained a LOS velocity and dispersion of 519 ± 12 km s−1and 42 ± 22 km s−1. The halo fields’ velocity measurement is within ∼40 km s−1from the systemic LOS velocity of NGC 4945, which is 563 km s−1, suggesting that its stellar halo at 34.6 kpc along the major axis is counter-rotating and its origins are likely to be the result of accretion. This provides the first-ever kinematic measurement of the stellar halo of a Milky Way-mass galaxy outside the Local Group from its resolved stellar population. Thus, we have established a powerful technique for measuring the velocity field for the stellar halos of nearby galaxies. 
    more » « less
  4. Abstract In the Λ-Cold Dark Matter model of the universe, galaxies form in part through accreting satellite systems. Previous works have built an understanding of the signatures of these processes contained within galactic stellar halos. This work revisits that picture using seven Milky Way–like galaxies in the Latte suite of FIRE-2 cosmological simulations. The resolution of these simulations allows a comparison of contributions from satellites above M * ≳ 10 × 7 M ⊙ , enabling the analysis of observable properties for disrupted satellites in a fully self-consistent and cosmological context. Our results show that the time of accretion and the stellar mass of an accreted satellite are fundamental parameters that in partnership dictate the resulting spatial distribution, orbital energy, and [ α /Fe]-[Fe/H] compositions of the stellar debris of such mergers at present day. These parameters also govern the resulting dynamical state of an accreted galaxy at z = 0, leading to the expectation that the inner regions of the stellar halo ( R GC ≲ 30 kpc) should contain fully phase-mixed debris from both lower- and higher-mass satellites. In addition, we find that a significant fraction of the lower-mass satellites accreted at early times deposit debris in the outer halo ( R GC > 50 kpc) that are not fully phased-mixed, indicating that they could be identified in kinematic surveys. Our results suggest that, as future surveys become increasingly able to map the outer halo of our Galaxy, they may reveal the remnants of long-dead dwarf galaxies whose counterparts are too faint to be seen in situ in higher-redshift surveys. 
    more » « less
  5. Abstract We analyze the outer regions of M33, beyond 15 kpc in projected distance from its center, using Subaru/Hyper Suprime-Cam multicolor imaging. We identify red giant branch (RGB) stars and red clump (RC) stars using the surface-gravity-sensitiveNB515filter for the RGB sample and a multicolor selection for both samples. We construct the radial surface density profiles of these RGB and RC stars and find that M33 has an extended stellar population with a shallow power-law index ofα> −3, depending on the intensity of the contamination. This result represents a flatter profile than the stellar halo that was detected by the previous study focusing on the central region, suggesting that M33 may have a double-structured halo component, i.e., inner/outer halos or a very extended disk. Also, the slope of this extended component is shallower than those typically found for halos in large galaxies, implying intermediate-mass galaxies may have different formation mechanisms (e.g., tidal interaction) from large spirals. We also analyze the radial color profiles of RC/RGB stars and detect a radial gradient, consistent with the presence of an old and/or metal-poor population in the outer region of M33, thereby supporting our proposal that the stellar halo extends beyond 15 kpc. Finally, we estimate that the surface brightness of this extended component isμV= 35.72 ± 0.08 mag arcsec−2. If our detected component is the stellar halo, this estimated value is consistent with the detection limit of previous observations. 
    more » « less