skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engineering doctoral student retention from an organizational climate and intersectional perspective: A targeted literature review of engineering education literature
Award ID(s):
2201100
PAR ID:
10590975
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the 2023 Meeting of the American Society for Engineering Education
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The National Science Board has declared that the long-term vitality of the U.S. workforce relies on the full range of science, technology, engineering, and mathematics (STEM) career pathways being available to all Americans. This declaration was premised on the increasing diversity in the U.S. population [1] and the need for multiple perspectives on the complex problems faced by society [2]. Thus, the National Science Foundation, the National Academies of Science, Engineering, and Medicine, the American Institutes of Research, and the Council of Graduate Schools have stated that the increased participation of women and members of racially minoritized and marginalized (RMM, including Black, Hispanic/Latinx, and Indigenous) groups in STEM is imperative to maintain the U.S. standing as a global leader in innovation. Because engineering doctoral graduates account for a large share of the innovation workforce [3], the ongoing lack of diversity in the engineering doctoral workforce remains a problem with far-reaching implications for the U.S. economy. The ‘mold’ for an engineering doctoral student was created by graduate education's earliest beneficiaries: young, White, and single men. Students who fall outside this mold, including women, people of color, older people, people with children, and people with disabilities are more likely than their traditional graduate student counterparts to report climate-related issues [4]. While some studies of university or campus-level climate for students have included doctoral students in general, few studies disaggregate findings by discipline or by demographic categories beyond gender identity and race/ethnicity. In engineering, Riley, Slaton, and Pawley’s [5] observed that the engineering education research community tends to take up issues of diversity focused on “women and [racial and ethnic] minorities while queerness, class, nationality, disability, age, and other forms of difference are, for the most part, not seen as requiring address”. This literature review was conducted as a preliminary assessment of the available research literature produced by the engineering education community on organizational climate affecting the retention of engineering doctoral students from diverse backgrounds. We seek to understand this specific student group’s retention as an organizational climate issue and use an intersectional approach to consider the meaning and relevance of students’ belonging, simultaneously to multiple social categories, such as gender identity, sexual orientation, socioeconomic background, race/ethnicity, and disability status within the context of engineering doctoral education as a first step to building a climate survey instrument. Searches on February 2, 2023, for existing scoping reviews and systematic reviews on this topic conducted on JBI Evidence Synthesis, the Cochrane Database of Systematic Reviews, and the Campbell Collaboration did not provide results [6]. The objective of this literature review is to explore how the concept of ‘climate’ is being used in the context of doctoral engineering student retention to degree completion and gather a body of evidence of climate factors. To do this, we conducted a targeted literature review and used intersectionality [7] [8] as our approach to interpreting the literature, as we aim to understand how climate affects the retention of engineering doctoral students from diverse backgrounds. In this paper, we first briefly present our understanding of organizational climate and intersectionality, then we explain our methodology, followed by results and finally discuss our analysis of the climate literature in engineering. 
    more » « less
  2. peer.asee.org/26428 
    more » « less
  3. Abstract BackgroundSketching exists in many disciplines and varies in how it is assessed, making it challenging to define fundamental sketching skills and the characteristics of a high‐quality sketch. For instructors to apply effective strategies for teaching and assessing engineering sketching, a clear summary of the constructs, metrics, and objectives for sketching assessment across engineering education and related disciplines is needed. PurposeThis systematic literature review explores sketching assessment definitions and approaches across engineering education research. Methodology/ApproachWe collected 671 papers from five major engineering and education databases at all skill levels for reported sketching constructs and metrics, cognition, and learning contexts. Based on the selection criteria, we eliminated all but 41 papers, on which we performed content analysis. Findings/ConclusionsEngineering, design, and art emerged as three major disciplines in the papers reviewed. We found that sketching assessment most often employs metrics on accuracy, perspective, line quality, annotations, and aesthetics. Most collected studies examined beginners in undergraduate engineering design sketching or drawing ability tests. Cognitive skills included perceiving the sketch subject, creatively sketching ideas, using metacognition to monitor the sketching process, and using sketching for communication. ImplicationsSketching assessment varies by engineering discipline and relies on many types of feedback and scoring metrics. Cognitive theory can inform instructional activities as a foundation for sketching skills. There is a need for robust evidence of high‐quality assessment practices in sketching instruction. Assessment experts can apply their knowledge toward improving sketching assessment development, implementation, and validation. 
    more » « less