skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 16, 2026

Title: Trajectory-based post-disaster content evacuation in inter-DC optical networks under cascading failures
In the post-pandemic era, global working patterns have been reshaped, and the demand for online network services has increased significantly. Therefore, cross-data-center content migration has become a relevant problem to address, leading to higher attention in data backup/recovery planning. Beyond traditional pre-disaster content redundancy approaches, this work focuses on the challenge of rapid post-disaster content evacuation under the threat of cascading failures. In fact, due to the interdependence of data centers (DCs), inter-DC optical networks, and power grid networks, disasters may have a domino effect on these infrastructures, with their impact gradually expanding over time and space. In this paper, we propose two trajectory models that capture the dynamic evolution of cascading failures, and we propose a trajectory-based content evacuation (TCE) strategy that considers the spatiotemporal evolution of cascading failures to minimize content loss. Numerical results show that, when each DC needs to evacuate about 200 TB of massive content, TCE can reduce content loss by up to 25% compared to baseline strategies.  more » « less
Award ID(s):
2210384
PAR ID:
10591002
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of Optical Communications and Networking
Volume:
17
Issue:
6
ISSN:
1943-0620; JOCNBB
Format(s):
Medium: X Size: Article No. B38
Size(s):
Article No. B38
Sponsoring Org:
National Science Foundation
More Like this
  1. In the post-pandemic era, global work patterns have been reshaped, and the demand for cloud migration for enterprises and government has increased. As a result, cloud data disaster backup/recovery technology has been gaining more attention. Moving beyond the traditional focus on pre-disaster content backup, our study addresses the challenge of rapidly evacuating content during cascading failures in post-disaster scenarios. Due to the interdependence of i) data centers (DCs), ii) inter-DC optical networks, and iii) power grid networks, disasters can have a domino effect on these infrastructures, with their impact gradually expanding over time and space. In this work, we propose two trajectory models for constructing the spatio-temporal features of the inter-DC optical network under cascading failures, and we propose a trajectory-based content evacuation strategy (TCE). Numerical results show that TCE can reduce content loss by up to 25% compared to baseline content evacuation strategies. 
    more » « less
  2. This project for Rapid Response Research (RAPID) project collects ephemeral data to better understand the compounding impacts of Maui wildfires and Hurricane Dora and reveal residents' behavioral responses as affected by infrastructure failures. It examines the sources of warning information, protective action decision-making, and evacuation logistics at the individual level. In the meantime, the project captures the operation states of disaster warning operations in Maui under the loss of cell and electric power services. Failures at each system are documented, as well as the cascading effect among inter-connected infrastructure systems. The research outcomes expand the existing body of scientific knowledge on warning and evacuation while advancing the understanding of informal networks and decision-making in the absence of official guidance. 
    more » « less
  3. Natural disasters can result in severe damage to communication infrastructure, which leads to further chaos to the damaged area. After the disaster strikes, most of the victims would gather at the evacuation sites for food supplies and other necessities. Having a good communication network is very important to help the victims. In this paper, we aim at recovering the network from the still-alive mobile base stations to the out-of-service evacuation sites by using multi-hop relaying technique. We propose to reconstruct the post-disaster network in a capacity-aware way based on prize collecting Steiner tree. The purpose of the proposed scheme is to achieve high capacity connectivity ratio in a cost efficient way. To provide more accurate evaluation results, we evaluate the proposed scheme by using the real evacuation site and base station data in Tokyo area, and utilizing the big data analysis based post-disaster service availability model. 
    more » « less
  4. In network-cloud ecosystems, large-scale failures affecting network carrier and datacenter (DC) infrastructures can severely disrupt cloud services. Post-disaster cloud service restoration requires cooperation among carriers and DC providers (DCPs) to minimize downtime. Such cooperation is challenging due to proprietary and regulatory policies, which limit access to confidential information (detailed topology, resource availability, etc.). Accordingly, we introduce a third-party entity, a provider-neutral exchange, which enables cooperation by sharing abstracted information. We formulate an optimization problem for DCP–carrier cooperation to maximize service restoration while minimizing restoration time and cost. We propose a scalable heuristic, demonstrating significant improvement in restoration efficiency with different topologies and failure scenarios. 
    more » « less
  5. Security concerns have been raised about cascading failure risks in evolving power grids. This paper reveals, for the first time, that the risk of cascading failures can be increased at low network demand levels when considering security-constrained generation dispatch. This occurs because critical transmission cor- ridors become very highly loaded due to the presence of central- ized generation dispatch, e.g., large thermal plants far from de- mand centers. This increased cascading risk is revealed in this work by incorporating security-constrained generation dispatch into the risk assessment and mitigation of cascading failures. A se- curity-constrained AC optimal power flow, which considers eco- nomic functions and security constraints (e.g., network con- straints, 𝑵 − 𝟏 security, and generation margin), is used to pro- vide a representative day-ahead operational plan. Cascading fail- ures are simulated using two simulators, a quasi-steady state DC power flow model, and a dynamic model incorporating all fre- quency-related dynamics, to allow for result comparison and ver- ification. The risk assessment procedure is illustrated using syn- thetic networks of 200 and 2,000 buses. Further, a novel preventive mitigation measure is proposed to first identify critical lines, whose failures are likely to trigger cascading failures, and then to limit power flow through these critical lines during dispatch. Results show that shifting power equivalent to 1% of total demand from critical lines to other lines can reduce cascading risk by up to 80%. 
    more » « less