skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Risk Assessment and Mitigation of Cascading Failures Using Critical Line Sensitivities
Security concerns have been raised about cascading failure risks in evolving power grids. This paper reveals, for the first time, that the risk of cascading failures can be increased at low network demand levels when considering security-constrained generation dispatch. This occurs because critical transmission cor- ridors become very highly loaded due to the presence of central- ized generation dispatch, e.g., large thermal plants far from de- mand centers. This increased cascading risk is revealed in this work by incorporating security-constrained generation dispatch into the risk assessment and mitigation of cascading failures. A se- curity-constrained AC optimal power flow, which considers eco- nomic functions and security constraints (e.g., network con- straints, đ‘” − 𝟏 security, and generation margin), is used to pro- vide a representative day-ahead operational plan. Cascading fail- ures are simulated using two simulators, a quasi-steady state DC power flow model, and a dynamic model incorporating all fre- quency-related dynamics, to allow for result comparison and ver- ification. The risk assessment procedure is illustrated using syn- thetic networks of 200 and 2,000 buses. Further, a novel preventive mitigation measure is proposed to first identify critical lines, whose failures are likely to trigger cascading failures, and then to limit power flow through these critical lines during dispatch. Results show that shifting power equivalent to 1% of total demand from critical lines to other lines can reduce cascading risk by up to 80%.  more » « less
Award ID(s):
1735354
PAR ID:
10494986
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Power Systems
Volume:
39
Issue:
2
ISSN:
0885-8950
Page Range / eLocation ID:
3937 to 3948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Baraldi, P.; null; Zio, E. (Ed.)
    Critical infrastructure networks are becoming increasingly interdependent which adversely impacts their performance through the cascading effect of initial failures. Failing to account for these complex interactions could lead to an underestimation of the vulnerability of interdependent critical infrastructure (ICI). The goal of this research is to assess how important interdependent links are by evaluating the interdependency strength using a dynamic network flow redistribution model which accounts for the dynamic and uncertain aspects of interdependencies. Specifically, a vulnerability analysis is performed considering two scenarios, one with interdependent links and the other without interdependent links. The initial failure is set to be the same under both scenarios. Cascading failure is modeled through a flow redistribution until the entire system reaches a stable state in which cascading failure no longer occurs. The unmet demand of the networks at the stable state over the initial demand is defined as the vulnerability. The difference between the vulnerability of each network under these two scenarios is used as the metric to quantify interdependency strength. A case study of a real power-water-gas system subject to earthquake risk is conducted to illustrate the proposed method. Uncertainty is incorporated by considering failure probability using Monte Carlo simulation. By varying the location and magnitude of earthquake disruptions, we show that interdependency strength is determined not only by the topology and flow of ICIs but also the characteristics of the disruptions. This compound system-disruption effect on interdependency strength can inform the design, assessment, and restoration of ICIs. 
    more » « less
  2. Transmission networks and generating units must be reinforced to satisfy the ever-increasing demand for electricity and to keep power system reliability within an acceptable level. According to the standards, the planned power system must be able to supply demand in the case of outage of a single element (N − 1 security criteria), and the possibility of cascading failures must be minimized. In this paper, we propose a risk-based dynamic generation and transmission expansion planning model with respect to the propagating effect of each contingency on the power system. Using the concept of risk, post-contingency load-shedding penalty costs are obtained and added in the objective function to penalize high-risk contingencies more dominantly. The McCormick relaxation is tailored to alter the objective function into a linear format. To keep the practicality of the proposed model, a second-order cone programming model is applied for power flow representation, and the problem is modeled in a dynamic time frame. The proposed model is formulated as a mixed-integer second-order cone programming problem. The numerical studies on the RTS 24-bus test system illustrate the efficacy of the proposed model. 
    more » « less
  3. One of the main desired capabilities of the smart grid is ‘self‐healing’, which is the ability to quickly restore power after a disturbance. Due to critical outage events, customer demand or load is at times disconnected or shed temporarily. While deterministic optimisation models have been devised to help operators expedite load shed recovery by harnessing the flexibility of the grid's topology (i.e. transmission line switching), an important issue that remains unaddressed is how to cope with the uncertainty in generation and demand encountered during the recovery process. This study introduces two‐stage stochastic models to deal with these uncertain parameters, and one of them incorporates conditional value‐at‐risk to measure the risk level of unrecovered load shed. The models are implemented using a scenario‐based approach where the objective is to maximise load shed recovery in the bulk transmission network by switching transmission lines and performing other corrective actions (e.g. generator re‐dispatch) after the topology is modified. The benefits of the proposed stochastic models are compared with a deterministic mean‐value model, using the IEEE 118‐ and 14‐bus test cases. Experiments highlight how the proposed approach can serve as an offline contingency analysis tool, and how this method aids self‐healing by recovering more load shedding. 
    more » « less
  4. null (Ed.)
    Contingency Constrained Optimal Power Flow (CCOPF) differs from traditional Optimal Power Flow (OPF) because its generation dispatch is planned to work with state variables between constraint limits, considering a specific contingency. When it is not desired to have changes in the power dispatch after the contingency occurs, the CCOPF is studied with a preventive perspective, whereas when the contingency occurs and the power dispatch needs to change to operate the system between limits in the post-contingency state, the problem is studied with a corrective perspective. As current power system software tools mainly focus on the traditional OPF problem, having the means to solve CCOPF will benefit power systems planning and operation. This paper presents a Quadratically Constrained Quadratic Programming (QCQP) formulation built within the matpower environment as a solution strategy to the preventive CCOPF. Moreover, an extended OPF model that forces the network to meet all constraints under contingency is proposed as a strategy to find the power dispatch solution for the corrective CCOPF. Validation is made on the IEEE 14-bus test system including photovoltaic generation in one simulation case. It was found that in the QCQP formulation, the power dispatch calculated barely differs in both pre- and post-contingency scenarios while in the OPF extended power network, node voltage values in both pre- and post-contingency scenarios are equal in spite of having different power dispatch for each scenario. This suggests that both the QCQP and the extended OPF formulations proposed, could be implemented in power system software tools in order to solve CCOPF problems from a preventive or corrective perspective. 
    more » « less
  5. Power grids based on traditional N-1 design criteria are no longer adequate because these designs do not withstand extreme weather events or cascading failures. Microgrid system has the capability of enhancing grid resilience through defensive or islanded operations in contingency. This paper presents a probabilistic framework for planning resilient distribution system via distributed wind and solar integration. We first define three aspects of resilient distribution system, namely prevention, survivability and recovery. Then we review the distributed generation planning models that comprehend moment estimation, chance constraints and bi-directional power flow. We strive to achieve two objectives: 1) enhancing the grid survivability when distribution lines are damaged or disconnected in the aftermath of disaster attack; and 2) accelerating the recovery of damaged assets through pro-active maintenance and repair services. A simple 9-node network is provided to demonstrate the application of the proposed resilience planning framework 
    more » « less