skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: The algebraic structure of hyperbolic graph braid groups
Genevois recently classified which graph braid groups are word hyperbolic. In the 3-strand case, he asked whether all such word hyperbolic groups are actually free; this reduced to checking two infinite classes of graphs: sun and pulsar graphs. We prove that 3-strand braid groups of sun graphs are free. On the other hand, it was known to experts that 3-strand braid groups of most pulsar graphs contain surface subgroups. We provide a simple proof of this and prove an additional structure theorem for these groups.  more » « less
Award ID(s):
2203325 2231492
PAR ID:
10591175
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
World Scientific Connect
Date Published:
Journal Name:
International Journal of Algebra and Computation
Volume:
35
Issue:
03
ISSN:
0218-1967
Page Range / eLocation ID:
329 to 342
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many well studied knots can be realized as positive braid knots where the braid word contains a positive full twist; we say that such knots are twist positive. Some important families of knots are twist positive, including torus knots, 1-bridge braids, algebraic knots, and Lorenz knots. We prove that if a knot is twist positive, the braid index appears as the third exponent in its Alexander polynomial. We provide a few applications of this result. After observing that most known examples of L-space knots are twist positive, we prove: if K is a twist positive L-space knot, the braid index and bridge index of K agree. This allows us to provide evidence for Baker’s reinterpretation of the slice-ribbon conjecture: that every smooth concordance class contains at most one fibered, strongly quasipositive knot. In particular, we provide the first example of an infinite family of positive braid knots which are distinct in concordance, and where, as g tends to infinity, the number of hyperbolic knots of genus g gets arbitrarily large. Finally, we collect some evidence for a few new conjectures, including the following: the braid and bridge indices agree for any L-space knot. 
    more » « less
  2. Abstract The set of equivalence classes of cobounded actions of a group on different hyperbolic metric spaces carries a natural partial order. Following Abbott–Balasubramanya–Osin, the group is ‐accessibleif the resulting poset has a largest element. In this paper, we prove that every nongeometric 3‐manifold has a finite cover with ‐inaccessible fundamental group and give conditions under which the fundamental group of the original manifold is ‐inaccessible. We also prove that every Croke–Kleiner admissible group (a class of graphs of groups that generalizes fundamental groups of three‐dimensional graph manifolds) has a finite index subgroup that is ‐inaccessible. 
    more » « less
  3. Abstract Sela proved that every torsion-free one-ended hyperbolic group is co-Hopfian. We prove that there exist torsion-free one-ended hyperbolic groups that are not commensurably co-Hopfian. In particular, we show that the fundamental group of every simple surface amalgam is not commensurably co-Hopfian. 
    more » « less
  4. The set of equivalence classes of cobounded actions of a group on different hyperbolic metric spaces carries a natural partial order. The resulting poset thus gives rise to a notion of the “best” hyperbolic action of a group as the largest element of this poset, if such an element exists. We call such an action a largest hyperbolic action. While hyperbolic groups admit the largest hyperbolic actions, we give evidence in this paper that this phenomenon is rare for non-hyperbolic groups. In particular, we prove that many families of groups of geometric origin do not have the largest hyperbolic actions, including for instance many 3-manifold groups and most mapping class groups. Our proofs use the quasi-trees of metric spaces of Bestvina–Bromberg–Fujiwara, among other tools. In addition, we give a complete characterization of the poset of hyperbolic actions of Anosov mapping torus groups, and we show that mapping class groups of closed surfaces of genus at least two have hyperbolic actions which are comparable only to the trivial action. 
    more » « less
  5. Abstract We prove a finiteness theorem for subgroups of bounded rank in hyperbolic 3‐manifold groups. As a consequence, we show that every bounded rank covering tower of closed hyperbolic 3‐manifolds is a tower of finite covers associated to a fibration over a 1‐orbifold. 
    more » « less