skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On-Chip Active Pulse-Clamp Stimulation (APCS) for Rapid Recovery, Charge-Balanced Neural Stimulation
Award ID(s):
2138697 2236238
PAR ID:
10591323
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISSN:
1558-3899
ISBN:
979-8-3503-8717-9
Page Range / eLocation ID:
523 to 527
Format(s):
Medium: X
Location:
Springfield, MA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Bi-directional brain-computer interfaces (BCIs) require simultaneous stimulation and recording to achieve closed-loop operation. It is therefore important that the interface be able to distinguish between neural signals of interest and stimulation artifacts. Current bi-directional BCIs address this problem by temporally multiplexing stimulation and recording. This approach, however, is suboptimal in many BCI applications. Alternative artifact mitigation methods can be devised by investigating the mechanics of artifact propagation. To characterize stimulation artifact behaviors, we collected and analyzed electrocorticography (ECoG) data from eloquent cortex mapping. Ratcheting and phase-locking of stimulation artifacts were observed, as well as dipole-like properties. Artifacts as large as ±1,100 μV appeared as far as 15-37 mm away from the stimulating channel when stimulating at 10 mA. Analysis also showed that the majority of the artifact power was concentrated at the stimulation pulse train frequency (50 Hz) and its super-harmonics (100, 150, 200 Hz). Lower frequencies (0-32 Hz) experienced minimal artifact contamination. These findings could inform the design of future bi-directional ECoG-based BCIs. 
    more » « less