Concepts and practices surrounding measurement uncertainty are vital knowledge for physicists and are often emphasized in undergraduate physics laboratory courses. We have previously developed a research-based assessment instrument—the Survey of Physics Reasoning on Uncertainty Concepts in Experiments (SPRUCE)—to examine student proficiency with measurement uncertainty along a variety of axes, including sources of uncertainty, handling of uncertainty, and distributions and repeated measurements. We present here initial results from the assessment representing over 1500 students from 20 institutions. We analyze students’ performance pre- and postinstruction in lab courses and examine how instruction impacts students with different majors and gender. We find that students typically excel in certain areas, such as reporting the mean of a distribution as their result, while they struggle in other areas, such as comparing measurements with uncertainty and correctly propagating errors using formulas. Additionally, we find that the importance that an instructor places in certain areas of measurement uncertainty is uncorrelated with student performance in those areas. Published by the American Physical Society2024
more »
« less
Development of a global landscape of undergraduate physics laboratory courses
Physics education research (PER) is a global endeavor, with a wealth of work performed at a variety of institutions worldwide. However, results from research into undergraduate physics laboratory courses are often difficult to compare due to the broad variations in courses. We report here how we developed and validated a survey to classify these courses, as well as compare and contrast them. This will be useful in two key endeavors: comparisons between PER studies and providing useful data for individual instructors hoping to improve their courses. While we are still in the process of collecting sufficient data to create a full taxonomy of laboratory courses, we present here details of the survey creation itself, including its face, construct, and content validation, as well as a first look at the data collected, which includes a broad landscape of lab courses in 41 countries. We used both quantitative and qualitative methods to analyze the data collected. Some of these results include similarities between courses, such as students often using preconstructed apparatuses and instructors hoping for students to learn technical skills. We also find differences in courses, such as in the number and types of goals of the course, as well as the activities students participate in. Thus, this survey and its results can provide information relevant to both researchers and instructors. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2317149
- PAR ID:
- 10591362
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Physics Education Research
- Volume:
- 20
- Issue:
- 2
- ISSN:
- 2469-9896
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Survey of Physics Reasoning on Uncertainty Concepts in Experiments (SPRUCE) was designed to measure students’ proficiency with measurement uncertainty concepts and practices across ten different assessment objectives to help facilitate the improvement of laboratory instruction focused on this important topic. To ensure the reliability and validity of this assessment, we conducted a comprehensive statistical analysis using classical test theory. This analysis includes an evaluation of the test as a whole, as well as an in-depth examination of individual items and assessment objectives. We make use of a previously reported on scoring scheme involving pairing items with assessment objectives, creating a new unit for statistical analysis referred to as a “couplet.” The findings from our analysis provide evidence for the reliability and validity of SPRUCE as an assessment tool for undergraduate physics labs. This increases both instructors’ and researchers’ confidence in using SPRUCE for measuring students’ proficiency with measurement uncertainty concepts and practices to ultimately improve laboratory instruction. Additionally, our results using couplets and assessment objectives demonstrate how these can be used with traditional classic test theory analysis. Published by the American Physical Society2024more » « less
-
There is currently little physics education literature examining thinking and learning in graduate education and even less literature characterizing problem solving among physics graduate students despite this being an essential professional skill for physicists. Given reports of discrepancies between physics problem solving in the undergraduate classroom and “real-world” problem solving, we sought to investigate whether this discrepancy exists at the graduate level. We first investigate the problem-solving skills present in first-year graduate physics assignments. A recent framework that characterizes problem solving as decisions-to-be-made was used. Assignments were taken from the four core courses of one academic year at one research-intensive university and coded by two researchers. We found that only 4 of the 29 decisions in the framework were present in most of the assignments. We then interviewed 11 instructors from 3 universities and asked which decisions they expected of first-year graduate students. Eleven decisions were expected by eight or more of the participants, but only four of these decisions were commonly practiced on assignments. Therefore, there seems to be a mismatch between instructor expectations and practice of problem solving on assignments. This suggests that graduate physics courses may not be aligned with the problem-solving skills that physics graduate students will need in their research or future careers. Published by the American Physical Society2025more » « less
-
Curricular analytics (CA) is a quantitative method that analyzes the sequence of courses (curriculum) that students in an undergraduate academic program must complete to fulfill the requirements of the program. The main hypothesis of CA is that the less complex a curriculum is, the more likely it is that students complete the program. This study compares the curricular complexity of undergraduate physics programs at 60 institutions in the United States. The institutions were divided into three tiers based on national rankings of the physics graduate program, and the means of each tier were compared. No significant difference between the means of each tier was found, indicating that there is not a relationship between program curricular complexity and program ranking. Further analysis focused on the physics, chemistry, and mathematics courses, defined as the core courses of the curriculum. Significant differences in the number of required core courses and the complexity per core course were measured between the tiers; both were measured as large effects. Programs with the highest rankings required fewer core courses while having a higher complexity per core course. These institutions have more strict prerequisite requirements than lower ranking programs. This study also showed complexity was quantitatively related to curricular flexibility operationalized as the number of available eight-semester degree plans. The number of available degree plans exponentially decreased with increasing core complexity per course. Modifications to a curriculum at one institution were analyzed; a similar relationship between the number of available degree plans and increasing complexity per core course was found. Published by the American Physical Society2024more » « less
-
In introductory physics laboratory instruction, students often expect to confirm or demonstrate textbook physics concepts. This expectation is largely undesirable: labs that emphasize confirmation of textbook physics concepts are generally unsuccessful at teaching those concepts and even in contexts that do not emphasize confirmation, such expectations can lead to students disregarding or manipulating their data in order to obtain the expected result. In other words, when students expect their lab activities to confirm a known result, they may relinquish epistemic agency and violate disciplinary practices. We present a contrasting case where, we claim, confirmatory expectations can actually support productive disciplinary engagement. In this case study, we analyze the complex dynamics of students’ epistemological framing in a lab where students’ confirmatory expectations support and even generate epistemic agency and disciplinary practices, including developing original ideas, measures, and apparatuses to apply to the material world. Published by the American Physical Society2024more » « less
An official website of the United States government

