Content Delivery Networks (CDNs) are Internet-scale systems that deliver streaming and web content to users from many geographically distributed edge data centers. Since large CDNs can comprise hundreds of thousands of servers deployed in thousands of global data centers, they can consume a large amount of energy for their operations and thus are responsible for large amounts of Green House Gas (GHG) emissions. As these networks scale to cope with increased demand for bandwidth-intensive content, their emissions are expected to rise further, making sustainable design and operation an important goal for the future. Since different geographic regions vary in the carbon intensity and cost of their electricity supply, in this paper, we consider spatial shifting as a key technique to jointly optimize the carbon emissions and energy costs of a CDN. We present two forms of shifting: spatial load shifting, which operates within the time scale of minutes, and VM capacity shifting, which operates at a coarse time scale of days or weeks. The proposed techniques jointly reduce carbon and electricity costs while considering the performance impact of increased request latency from such optimizations. Using real-world traces from a large CDN and carbon intensity and energy prices data from electric grids in different regions, we show that increasing the latency by 60ms can reduce carbon emissions by up to 35.5%, 78.6%, and 61.7% across the US, Europe, and worldwide, respectively. In addition, we show that capacity shifting can increase carbon savings by up to 61.2%. Finally, we analyze the benefits of spatial shifting and show that it increases carbon savings from added solar energy by 68% and 130% in the US and Europe, respectively. 
                        more » 
                        « less   
                    This content will become publicly available on June 30, 2026
                            
                            GreenThrift: Optimizing Carbon and Cost for Flexible Residential Loads
                        
                    
    
            Reducing buildings’ carbon emissions is an important sustainability challenge. While scheduling flexible building loads has been previously used for a variety of grid and energy optimizations, carbon footprint reduction using such flexible loads poses new challenges since such methods need to balance both energy and carbon costs while also reducing user inconvenience from delaying such loads. This article highlights the potential conflict between electricity prices and carbon emissions and the resulting tradeoffs in carbon-aware and cost-aware load scheduling. To address this tradeoff, we propose GreenThrift, a home automation system that leverages the scheduling capabilities of smart appliances and knowledge of future carbon intensity and cost to reduce both the carbon emissions and costs of flexible energy loads. At the heart of GreenThrift is an optimization technique that automatically computes schedules based on user configurations and preferences. We evaluate the effectiveness of GreenThrift using real-world carbon intensity data, electricity prices, and load traces from multiple locations and across different scenarios and objectives. Our results show that GreenThrift can replicate the offline optimal and retains 97% of the savings when optimizing the carbon emissions. Moreover, we show how GreenThrift can balance the conflict between carbon and cost and retain 95.3% and 85.5% of the potential carbon and cost savings, respectively. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10591400
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Journal on Computing and Sustainable Societies
- Volume:
- 3
- Issue:
- 2
- ISSN:
- 2834-5533
- Page Range / eLocation ID:
- 1 to 21
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions --- equivalent to a drop of 23.3% in our electric grid emissions.more » « less
- 
            Dynamic Electricity Pricing – Modeling Manufacturer Response and an Application to Cement ProcessingDynamic pricing, also known as real-time pricing, provides electricity users with an economic incentive to adjust electricity use based on changing market conditions. This paper studies the economic implications of real-time pricing mechanisms in a cement manufacturing plant. Production for a representative cement manufacturing plant is modeled using stochastic mathematical programming. The results show that a cement plant can a) reduce electricity costs by shifting electricity load of certain processes to times when electricity prices are lower, and b) profitably reduce electricity use during peak prices through more efficient scheduling of production under real-time pricing compared to fixed pricing. The results suggest that building scheduling flexibility into certain industrial manufacturing processes to reschedule electricity consumption when the electricity prices at their peak may be economical. The results also suggest that shifts in the production schedule of a cement manufacturer that result from real-time pricing may also influence environmental impacts. The modelling framework modeled real-time pricing as a source of risk in this study, which is also applicable to other energy intensive industries. As such, dynamic pricing strategies that include the non-market impacts of electricity generation should be further explored.more » « less
- 
            Buildings produce a significant share of greenhouse gas (GHG) emissions, making homes and businesses a major factor in climate change. To address this critical challenge, this paper explores achieving net-zero emission through the carbon-aware optimal scheduling of the multi-energy building integrated energy systems (BIES). We integrate advanced technologies and strategies, such as the carbon capture system (CCS), power-to-gas (P2G), carbon tracking, and emission allowance trading, into the traditional BIES scheduling problem. The proposed model enables accurate accounting of carbon emissions associated with building energy systems and facilitates the implementation of low-carbon operations. Furthermore, to address the challenge of accurately assessing uncertainty sets related to forecasting errors of loads, generation, and carbon intensity, we develop a learning-based robust optimization approach for BIES that is robust in the presence of uncertainty and guarantees statistical feasibility. The proposed approach comprises a shape learning stage and a shape calibration stage to generate an optimal uncertainty set that ensures favorable results from a statistical perspective. Numerical studies conducted based on both synthetic and real-world datasets have demonstrated that the approach yields up to 8.2% cost reduction, compared with conventional methods, in assisting buildings to robustly reach net-zero emissions.more » « less
- 
            As computing demand continues to grow, minimizing its environmental impact has become crucial. This paper presents a study on carbon-aware scheduling algorithms, focusing on reducing carbon emissions of delay-tolerant batch workloads. Inspired by the Follow the Leader strategy, we introduce a simple yet efficient meta-algorithm, called FTL, that dynamically selects the most efficient scheduling algorithm based on real-time data and historical performance. Without fine-tuning and parameter optimization, FTL adapts to variability in job lengths, carbon intensity forecasts, and regional energy characteristics, consistently outperforming traditional carbon-aware scheduling algorithms. Through extensive experiments using real-world data traces, FTL achieves 8.2% and 14% improvement in average carbon footprint reduction over the closest runner-up algorithm and the carbon-agnostic algorithm, respectively, demonstrating its efficacy in minimizing carbon emissions across multiple geographical regions.1more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
