skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Examining The Adoption of Electromobility Concepts Across Social Contexts For Energy Transition
The impact of mobility decisions not only shapes urban traffic patterns and planning, but also its associated effects, such as greenhouse gas (GHG) emissions. Although e-bike sharing is not a new concept, it has shown significant strides in technological progress in recent years due to the ongoing process of digitalization, specifically towards decarbonization effects. Past studies have shown that e-bike sharing shows a potential as a fast, mobile, and environmentally friendly alternative to cars and public transport. Although e-bikes represent a viable alternative to traditional means of transportation, there is a lack of quantification in understanding the impact and acceptance of e-bikes towards social contexts as well as its adoption as a type of sharing concept. In this paper, we employ the Unified Theory of Acceptance and Use of Technology (UTAUT) model as an analytical framework to discern the use and acceptance of e-bike sharing as an emerging technological concept across different cities and social contexts. Our findings reveal that the e-bike sharing system's utilization is skewed towards a small percentage of "frequent users", and overall usage is biased towards younger, more-educated, and higher-income populations who live in bike-friendly areas. Our work contributes to the feasibility of embedding the e-bike sharing concept in the scope of the energy transition.  more » « less
Award ID(s):
2325956
PAR ID:
10591381
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400707063
Page Range / eLocation ID:
199 to 203
Format(s):
Medium: X
Location:
Hangzhou China
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    While ride-sharing has emerged as a popular form of transportation in urban areas due to its on-demand convenience, it has become a major contributor to carbon emissions, with recent studies suggesting it is 47% more carbon-intensive than personal car trips. In this paper, we examine the feasibility, costs, and carbon benefits of using electric bike-sharing---a low carbon form of ride-sharing---as a potential substitute for shorter ride-sharing trips, with the overall goal of greening the ride-sharing ecosystem. Using public datasets from New York City, our analysis shows that nearly half of the taxi and rideshare trips in New York are shorts trips of less than 3.5km, and that biking is actually faster than using a car for ultra-short trips of 2km or less. We analyze the cost and carbon benefits of different levels of ride substitution under various scenarios. We find that the additional bikes required to satisfy increased demand from ride substitution increases sub-linearly and results in 6.6% carbon emission reduction for 10% taxi ride substitution. Moreover, this reduction can be achieved through a hybrid mix that requires only a quarter of the bikes to be electric bikes, which reduces system costs. We also find that expanding bike-share systems to new areas that lack bike-share coverage requires additional investments due to the need for new bike stations and bike capacity to satisfy demand but also provides substantial carbon emission reductions. Finally, frequent station repositioning can reduce the number of bikes needed in the system by up to a third for a minimal increase in carbon emissions of 2% from the trucks required to perform repositioning, providing an interesting tradeoff between capital costs and carbon emissions. 
    more » « less
  2. null (Ed.)
    While ride-sharing has emerged as a popular form of transportation in urban areas due to its on-demand convenience, it has become a major contributor to carbon emissions, with recent studies suggesting it is 47% more carbon-intensive than personal car trips. In this paper, we examine the feasibility, costs, and carbon benefits of using electric bike-sharing—a low carbon form of ride-sharing—as a potential substitute for shorter ride-sharing trips, with the overall goal of greening the ride-sharing ecosystem. Using public datasets from New York City, our analysis shows that nearly half of the taxi and rideshare trips in New York are shorts trips of less than 3.5km, and that biking is actually faster than using a car for ultra-short trips of 2km or less. We analyze the cost and carbon benefits of different levels of ride substitution under various scenarios. We find that the additional bikes required to satisfy increased demand from ride substitution increases sub-linearly and results in 6.6% carbon emission reduction for 10% taxi ride substitution. Moreover, this reduction can be achieved through a hybrid mix that requires only a quarter of the bikes to be electric bikes, which reduces system costs. We also find that expanding bike-share systems to new areas that lack bike-share coverage requires additional investments due to the need for new bike stations and bike capacity to satisfy demand but also provides substantial carbon emission reductions. Finally, frequent station repositioning can reduce the number of bikes needed in the system by up to a third for a minimal increase in carbon emissions of 2% from the trucks required to perform repositioning, providing an interesting tradeoff between capital costs and carbon emissions. 
    more » « less
  3. As more people move back into densely populated cities, bike sharing is emerging as an important mode of urban mobility. In a typical bike-sharing system (BSS), riders arrive at a station and take a bike if it is available. After retrieving a bike, they ride it for a while, then return it to a station near their final destinations. Since space is limited in cities, each station has a finite capacity of docks, which cannot hold more bikes than its capacity. In this paper, we study BSSs with stations having a finite capacity. By an appropriate scaling of our stochastic model, we prove a mean-field limit and a central limit theorem for an empirical process of the number of stations with k bikes. The mean-field limit and the central limit theorem provide insight on the mean, variance, and sample path dynamics of large-scale BSSs. We also leverage our results to estimate confidence intervals for various performance measures such as the proportion of empty stations, the proportion of full stations, and the number of bikes in circulation. These performance measures have the potential to inform the operations and design of future BSSs. 
    more » « less
  4. Abstract Electric shared mobility hubs, called eHUBs, offer users access to a range of shared electric vehicles, including e‐bikes, e‐cargobikes, and e‐cars. Through the diversity of modes offered, eHUBs provide mobility solutions for different target groups and trip purposes. In this study, potential users’ willingness to use shared electric vehicles from eHUBs as either a commute or food shopping trip alternative was analysed using logistic regression methods. Results indicated that half of respondents were willing to use shared electric vehicles for at least a few of their regular commute or food shopping trips, although this proportion dropped substantially if considering the use of shared vehicles in combination with public transport. Across modes and trip purposes, holding a pro‐shared mobility attitude and belonging to the youngest age group strongly increased the willingness to use shared modes. Yet, while eHUBS may offer a potential alternative for at least some of people's regular commute or food shopping trips, cross‐mode shifts may be limited. That is, car drivers show a greater interest in shared e‐cars, whereas cyclists show a greater interest in e‐bikes and e‐cargobikes with public transport. Further influential factors, as well as implications for both shared mobility providers and local authorities, are discussed. 
    more » « less
  5. null (Ed.)
    Bike sharing systems have been in place for several years in many urban areas as alternative and sustainable means of transportation. Bicycle usage heavily depends on the available infrastructure (e.g., protected bike lanes), but other—mutable or immutable—environmental characteristics of a city can influence the adoption of the system from its dwellers. Hence, it is important to understand how these factors influence people’s decisions of whether to use a bike system or not. In this this paper, we first investigate how altitude variation influences the usage of the bike sharing system in Pittsburgh. Using trip data from the system, and controlling fora number of other potential confounding factors, we formulate the problem as a classification problem, develop a framework to enable prediction using Poisson regression, and find that there is a negative correlation between the altitude difference and the number of trips between two stations (fewer trips between stations with larger altitude difference). We further, discuss how the results of our analysis can be used to inform decision making during the design and operation of bike sharing systems. 
    more » « less