Abstract We report a timing analysis of near-infrared (NIR), X-ray, and submillimeter data during a 3 day coordinated campaign observing Sagittarius A*. Data were collected at 4.5 μ m with the Spitzer Space Telescope, 2–8 keV with the Chandra X-ray Observatory, 3–70 keV with NuSTAR, 340 GHz with ALMA, and 2.2 μ m with the GRAVITY instrument on the Very Large Telescope Interferometer. Two dates show moderate variability with no significant lags between the submillimeter and the infrared at 99% confidence. A moderately bright NIR flare ( F K ∼ 15 mJy) was captured on July 18 simultaneous with an X-ray flare ( F 2−10 keV ∼ 0.1 counts s −1 ) that most likely preceded bright submillimeter flux ( F 340 GHz ∼ 5.5 Jy) by about + 34 − 33 + 14 minutes at 99% confidence. The uncertainty in this lag is dominated by the fact that we did not observe the peak of the submillimeter emission. A synchrotron source cooled through adiabatic expansion can describe a rise in the submillimeter once the synchrotron self-Compton NIR and X-ray peaks have faded. This model predicts high GHz and THz fluxes at the time of the NIR/X-ray peak and electron densities well above those implied from average accretion rates for Sgr A*. However, the higher electron density postulated in this scenario would be in agreement with the idea that 2019 was an extraordinary epoch with a heightened accretion rate. Since the NIR and X-ray peaks can also be fit by a nonthermal synchrotron source with lower electron densities, we cannot rule out an unrelated chance coincidence of this bright submillimeter flare with the NIR/X-ray emission. 
                        more » 
                        « less   
                    This content will become publicly available on January 20, 2026
                            
                            First Mid-infrared Detection and Modeling of a Flare from Sgr A*
                        
                    
    
            Abstract The time-variable emission from the accretion flow of Sgr A*, the supermassive black hole at the Galactic center, has long been examined in the radio-to-millimeter, near-infrared (NIR), and X-ray regimes of the electromagnetic spectrum. However, until now, sensitivity and angular resolution have been insufficient in the crucial mid-infrared (MIR) regime. The MIRI instrument on JWST has changed that, and we report the first MIR detection of Sgr A*. The detection was during a flare that lasted about 40 minutes, a duration similar to NIR and X-ray flares, and the source's spectral index steepened as the flare ended. The steepening suggests that synchrotron cooling is an important process for Sgr A*'s variability and implies magnetic fields strengths ~ 40–70 G in the emission zone. Observations at 1.3 mm with the Submillimeter Array revealed a counterpart flare lagging the MIR flare by ≈10 minutes. The observations can be self-consistently explained as synchrotron radiation from a single population of gradually cooling high-energy electrons accelerated through (a combination of) magnetic reconnection and/or magnetized turbulence. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2401752
- PAR ID:
- 10591435
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- The Astrophysical Journal Letters
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 979
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT Sgr A* exhibits regular variability in its multiwavelength emission, including daily X-ray flares and roughly continuous near-infrared (NIR) flickering. The origin of this variability is still ambiguous since both inverse Compton and synchrotron emission are possible radiative mechanisms. The underlying particle distributions are also not well constrained, particularly the non-thermal contribution. In this work, we employ the GPU-accelerated general relativistic magnetohydrodynamics code H-AMR to perform a study of flare flux distributions, including the effect of particle acceleration for the first time in high-resolution 3D simulations of Sgr A*. For the particle acceleration, we use the general relativistic ray-tracing code bhoss to perform the radiative transfer, assuming a hybrid thermal+non-thermal electron energy distribution. We extract ∼60 h light curves in the sub-millimetre, NIR and X-ray wavebands, and compare the power spectra and the cumulative flux distributions of the light curves to statistical descriptions for Sgr A* flares. Our results indicate that non-thermal populations of electrons arising from turbulence-driven reconnection in weakly magnetized accretion flows lead to moderate NIR and X-ray flares and reasonably describe the X-ray flux distribution while fulfilling multiwavelength flux constraints. These models exhibit high rms per cent amplitudes, $$\gtrsim 150{{\ \rm per\ cent}}$$ both in the NIR and the X-rays, with changes in the accretion rate driving the 230 GHz flux variability, in agreement with Sgr A* observations.more » « less
- 
            We report the time-resolved spectral analysis of a bright near-infrared and moderate X-ray flare of Sgr A ⋆ . We obtained light curves in the M , K , and H bands in the mid- and near-infrared and in the 2 − 8 keV and 2 − 70 keV bands in the X-ray. The observed spectral slope in the near-infrared band is νL ν ∝ ν 0.5 ± 0.2 ; the spectral slope observed in the X-ray band is νL ν ∝ ν −0.7 ± 0.5 . Using a fast numerical implementation of a synchrotron sphere with a constant radius, magnetic field, and electron density (i.e., a one-zone model), we tested various synchrotron and synchrotron self-Compton scenarios. The observed near-infrared brightness and X-ray faintness, together with the observed spectral slopes, pose challenges for all models explored. We rule out a scenario in which the near-infrared emission is synchrotron emission and the X-ray emission is synchrotron self-Compton. Two realizations of the one-zone model can explain the observed flare and its temporal correlation: one-zone model in which the near-infrared and X-ray luminosity are produced by synchrotron self-Compton and a model in which the luminosity stems from a cooled synchrotron spectrum. Both models can describe the mean spectral energy distribution (SED) and temporal evolution similarly well. In order to describe the mean SED, both models require specific values of the maximum Lorentz factor γ max , which differ by roughly two orders of magnitude. The synchrotron self-Compton model suggests that electrons are accelerated to γ max ∼ 500, while cooled synchrotron model requires acceleration up to γ max ∼ 5 × 10 4 . The synchrotron self-Compton scenario requires electron densities of 10 10 cm −3 that are much larger than typical ambient densities in the accretion flow. Furthermore, it requires a variation of the particle density that is inconsistent with the average mass-flow rate inferred from polarization measurements and can therefore only be realized in an extraordinary accretion event. In contrast, assuming a source size of 1 R S , the cooled synchrotron scenario can be realized with densities and magnetic fields comparable with the ambient accretion flow. For both models, the temporal evolution is regulated through the maximum acceleration factor γ max , implying that sustained particle acceleration is required to explain at least a part of the temporal evolution of the flare.more » « less
- 
            ABSTRACT Sgr A* exhibits flares in the near-infrared and X-ray bands, with the luminosity in these bands increasing by factors of 10–100 for ≈60 min. One of the models proposed to explain these flares is synchrotron emission of non-thermal particles accelerated by magnetic reconnection events in the accretion flow. We use the results from particle-in-cell simulations of magnetic reconnection to post-process 3D two-temperature GRMHD simulations of a magnetically arrested disc (MAD). We identify current sheets, retrieve their properties, estimate their potential to accelerate non-thermal particles, and compute the expected non-thermal synchrotron emission. We find that the flux eruptions of MADs can provide suitable conditions for accelerating non-thermal particles to energies γe ≲ 106 and producing simultaneous X-ray and near-infrared flares. For a suitable choice of current-sheet parameters and a simplified synchrotron cooling prescription, the model can simultaneously reproduce the quiescent and flaring X-ray luminosities as well as the X-ray spectral shape. While the near-infrared flares are mainly due to an increase in the temperature near the black hole during the MAD flux eruptions, the X-ray emission comes from narrow current sheets bordering highly magnetized, low-density regions near the black hole, and equatorial current sheets where the flux on the black hole reconnects. As a result, not all infrared flares are accompanied by X-ray ones. The non-thermal flaring emission can extend to very hard (≲ 100 keV) X-ray energies.more » « less
- 
            Abstract We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5–11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of ∼50 μ as, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*’s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
