skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Advanced Air Mobility for commuting? An exploration of economic, energy, and environmental feasibility
Advanced Air Mobility (AAM) presents an emerging alternative to traditional car driving for commuting in metropolitan areas. However, its feasibility has not been thoroughly studied nor well understood at the operational level. Given that AAM has not been in place, this study explores the economic, energy, and environmental feasibility of AAM for commuting at an early stage of AAM deployment. We propose a time expanded network model to characterize the dynamics of eVTOL operations between a vertiport pair in different states: in-service flying, relocation flying, charging, and parking, while respecting various operational and commuter time window constraints. By jointly considering eVTOL flying with vertiport access and egress and using real-world data, we demonstrate an application of the model in the Chicago metropolitan area in the US. Different vertiport pairs and eVTOL aircraft models are investigated. We find substantial travel time saving if commuting by AAM. While vehicle operating cost will be higher using eVTOLs than using auto, the generalized travel cost will be less for commuters. On the other hand, with current eVTOL power requirement, the energy consumption and CO2 emissions of AAM will be greater than those of auto driving, with an important contributor being the significance presence of empty flights relocation. These findings, along with sensitivity analysis, shed light on future eVTOL development to enhance the competitiveness of AAM as a viable option for commuting.  more » « less
Award ID(s):
2112650
PAR ID:
10591471
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Transport Economics and Management
Volume:
3
Issue:
C
ISSN:
2949-8996
Page Range / eLocation ID:
135 to 152
Subject(s) / Keyword(s):
Advanced Air Mobility (AAM) Electric vertical takeoff and landing aircraft (eVTOL) Commuting Time-expanded network model Economic feasibility Energy and environmental feasibility
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advanced Air Mobility (AAM) using electrical vertical take-off and landing (eVTOL) aircraft is an emerging way of air transportation within metropolitan areas. A key challenge for the success of AAM is how to manage large-scale flight operations with safety guarantees in high-density, dynamic, and uncertain airspace environments in real time. To address these challenges, we introduce the concept of a data-driven probabilistic geofence, which can guarantee that the probability of potential conflicts between eVTOL aircraft is bounded under data-driven uncertainties. To evaluate the probabilistic geofences online, Kernel Density Estimation (KDE) based on Fast Fourier Transform (FFT) is customized to model data-driven uncertainties. Based on the FFT-KDE values from data-driven uncertainties, we introduce an optimization framework of Integer Linear Programming (ILP) to find a parallelogram box to approximate the data-driven probabilistic geofence. To overcome the computational burden of ILP, an efficient heuristic algorithm is further developed. Numerical results demonstrate the feasibility and efficiency of the proposed algorithms. 
    more » « less
  2. Advanced air mobility (AAM) is an emerging sector in aviation aiming to offer secure, efficient, and eco-friendly transportation utilizing electric vertical takeoff and landing (eVTOL) aircraft. These vehicles are designed for short-haul flights, transporting passengers and cargo between urban centers, suburbs, and remote areas. As the number of flights is expected to rise significantly in congested metropolitan areas, there is a need for a digital ecosystem to support the AAM platform. This ecosystem requires seamless integration of air traffic management systems, ground control systems, and communication networks, enabling effective communication between AAM vehicles and ground systems to ensure safe and efficient operations. Consequently, the aviation industry is seeking to develop a new aerospace framework that promotes shared aerospace practices, ensuring the safety, sustainability, and efficiency of air traffic operations. However, the lack of adequate wireless coverage in congested cities and disconnected rural communities poses challenges for large-scale AAM deployments. In the immediate recovery phase, incorporating AAM with new air-to-ground connectivity presents difficulties such as overwhelming the terrestrial network with data requests, maintaining link reliability, and managing handover occurrences. Furthermore, managing eVTOL traffic in urban areas with congested airspace necessitates high levels of connectivity to support air routing information for eVTOL vehicles. This paper introduces a novel concept addressing future flight challenges and proposes a framework for integrating operations, infrastructure, connectivity, and ecosystems in future air mobility. Specifically, it includes a performance analysis to illustrate the impact of extensive AAM vehicle mobility on ground base station network infrastructure in urban environments. This work aims to pave the way for future air mobility by introducing a new vision for backbone infrastructure that supports safe and sustainable aviation through advanced communication technology. 
    more » « less
  3. Jin, Sheng (Ed.)
    This work considers the sensitivity of commute travel times in US metro areas due to potential changes in commute patterns, for example caused by events such as pandemics. Permanent shifts away from transit and carpooling can add vehicles to congested road networks, increasing travel times. Growth in the number of workers who avoid commuting and work from home instead can offset travel time increases. To estimate these potential impacts, 6-9 years of American Community Survey commute data for 118 metropolitan statistical areas are investigated. For 74 of the metro areas, the average commute travel time is shown to be explainable using only the number of passenger vehicles used for commuting. A universal Bureau of Public Roads model characterizes the sensitivity of each metro area with respect to additional vehicles. The resulting models are then used to determine the change in average travel time for each metro area in scenarios when 25% or 50% of transit and carpool users switch to single occupancy vehicles. Under a 25% mode shift, areas such as San Francisco and New York that are already congested and have high transit ridership may experience round trip travel time increases of 12 minutes (New York) to 20 minutes (San Francisco), costing individual commuters $1065 and $1601 annually in lost time. The travel time increases and corresponding costs can be avoided with an increase in working from home. The main contribution of this work is to provide a model to quantify the potential increase in commute travel times under various behavior changes, that can aid policy making for more efficient commuting. 
    more » « less
  4. Electric vertical takeoff and landing aircraft (eVTOLs) are gaining growing interest recently. However, limited attention has been paid to the prospect of using eVTOLs for package delivery. To fill this void, this paper explores the attractiveness of eVTOL-based package delivery in terms of cost, energy consumption, and CO2 emissions. Given that eVTOLs cannot take off/land at customer doorsteps, a two-leg system design is proposed and formulated as an optimization model. To implement the model, we consider multiple plausible eVTOL and ground vehicle types, their cost economics, and energy use and CO2 emission characteristics. Applying the model in the Chicago metro region, we find that the attractiveness of eVTOL-based package delivery depends critically on the eVTOL and ground vehicle types. With an appropriate eVTOL-ground vehicle combination, eVTOL-based delivery can be attractive compared to van-only delivery in terms of total shipping cost, but not necessarily so from the energy and mission perspectives. This highlights the need for future R&D to further enhance the energy efficiency of eVTOLs. When designing eVTOL-based package delivery systems, the importance to account for the potential interactions between eVTOL traffic and commercial air traffic should also be recognized. 
    more » « less
  5. An analysis was done to find the emerging location(s) for the electrical vertical takeoff and landing (eVTOL) industry. The VTOL and eVTOL industries are aiming to replace short private jet travel as helicopters will have the ability to cut out some of the driving. For instance, it can bring a client to the top of a skyscraper because heliports and vertiports can be positioned almost anywhere making them more accessible than private jets. Initially, a numerical analysis was done to see how the past could predict the future, which showed electric vehicle (eV) charging stations have been exponentially rising while heliports have been declining. This was used in the analysis when choosing the criteria to analyze. It was determined that the final recommendation for the emerging location of the eVTOL industry would use the following: 25% Flexjet data, 25% eV charging stations, 25% population density, and 25% median household income. The Flexjet flight data reflected the busiest airports for flights 30 minutes or less for departures and arrivals. The eV charging station data showed which states have the largest number of charging stations at parking lots or garages, since they can be converted to vertiports in the future. The population density and median household income showed the top 10 cities in the US for each, respectively. This led to a final score given for every state and showed New York would be the emerging location for the eVTOL industry based on the data and scoring. This led to recommendations given to OneSky for New York. 
    more » « less