skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 29, 2026

Title: Communicating Numeric Risk Information to Patients
Risk information is increasingly available to health care providers and patients thanks to a growing body of health outcomes research and clinical prediction models. Meanwhile, communicating such information is encouraged for a variety of reasons. Yet clinicians often struggle to communicate risk information—or forego the task altogether due to various challenges. The challenges are real, and this paper briefly discusses six of them: (1) Clinician reliance on verbal risk descriptions, (2) Low patient numeracy; (3) Lack of meaningful numeric evidence; (4) Patient use of heuristics; (5) Uncertain risk information; and (6) The curse of knowledge. Specific strategies exist for clinicians, though, to overcome these complex challenges. In the paper, we present evidence-based best practices with examples of what clinicians can do to effectively communicate risk information to their patients (and what they should not do). The best practices include communicating with numbers, not only words; decreasing cognitive effort for patients; providing the meaning of numeric risk data important to decisions; acknowledging uncertainty; and testing communication with patients through teach-back techniques. We conclude by recommending that clinicians integrate these strategies into their existing scripts for patient encounters.  more » « less
Award ID(s):
2343329 2436970
PAR ID:
10591480
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of General Internal Medicine
ISSN:
0884-8734
Subject(s) / Keyword(s):
risk communication patient communication shared decision making numeracy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Patient-generated data (PGD) show great promise for informing the delivery of personalized and patient-centered care. However, patients' data tracking does not automatically lead to data sharing and discussion with clinicians, which can make it difficult to utilize and derive optimal benefit from PGD. In this paper, we investigate whether and how patients share their PGD with clinicians and the types of challenges that arise within this context. We describe patients' immediate experiences of PGD sharing with clinicians, based on our short onsite interviews with 57 patients who had just met with a clinician at a university health center. Our analyses identified overarching patterns in patients' PGD sharing practices and the associated challenges that arise from the information asymmetry between patients and clinicians and from patients' reliance on their memory to share their PGD. We discuss the implications of our findings for designing PGD-integrated health IT systems in ways to support patients' tracking of relevant PGD, clinicians' effective engagement with patients around PGD, and the efficient sharing and review of PGD within clinical settings. 
    more » « less
  2. After the pandemic, artificial intelligence (AI) powered support for mental health care has become increasingly important. The breadth and complexity of significant challenges required to provide adequate care involve:(a) Personalized patient understanding, (b) Safety-constrained and medically validated chatbot patient interactions, and (c) Support for continued feedback-based refinements in design using chatbot-patient interactions. We propose Alleviate, a chatbot designed to assist patients suffering from mental health challenges with personalized care and assist clinicians with understanding their patients better. Alleviate draws from an array of publicly available clinically valid mental-health texts and databases, allowing Alleviate to make medically sound and informed decisions. In addition, Alleviate's modular design and explainable decision-making lends itself to robust and continued feedback-based refinements to its design. In this paper, we explain the different modules of Alleviate and submit a short video demonstrating Alleviate's capabilities to help patients and clinicians understand each other better to facilitate optimal care strategies. 
    more » « less
  3. Background Remote patient monitoring (RPM) technologies can support patients living with chronic conditions through self-monitoring of physiological measures and enhance clinicians’ diagnostic and treatment decisions. However, to date, large-scale pragmatic RPM implementation within health systems has been limited, and understanding of the impacts of RPM technologies on clinical workflows and care experience is lacking. Objective In this study, we evaluate the early implementation of operational RPM initiatives for chronic disease management within the ambulatory network of an academic medical center in New York City, focusing on the experiences of “early adopter” clinicians and patients. Methods Using a multimethod qualitative approach, we conducted (1) interviews with 13 clinicians across 9 specialties considered as early adopters and supporters of RPM and (2) speculative design sessions exploring the future of RPM in clinical care with 21 patients and patient representatives, to better understand experiences, preferences, and expectations of pragmatic RPM use for health care delivery. Results We identified themes relevant to RPM implementation within the following areas: (1) data collection and practices, including impacts of taking real-world measures and issues of data sharing, security, and privacy; (2) proactive and preventive care, including proactive and preventive monitoring, and proactive interventions and support; and (3) health disparities and equity, including tailored and flexible care and implicit bias. We also identified evidence for mitigation and support to address challenges in each of these areas. Conclusions This study highlights the unique contexts, perceptions, and challenges regarding the deployment of RPM in clinical practice, including its potential implications for clinical workflows and work experiences. Based on these findings, we offer implementation and design recommendations for health systems interested in deploying RPM-enabled health care. 
    more » « less
  4. null (Ed.)
    Abstract This paper explores our collaborative STS and anthropological project with type 1 diabetes (T1D) hardware “hacking” communities, whose work focuses on reverse-engineering and extracting data from medical devices such as insulin pumps and continuous glucose monitoring systems (CGMS) to create do-it-yourself artificial pancreas systems (APS). Rather than using these devices within their prescriptive and prescribed purposes (surveillance and treatment monitoring), these “hackers” repurpose, reinterpret, and redirect of the possibilities of medical surveillance data in order to reshape their own treatment. Through “deliberate non-compliance” (Scibilia 2017) with cliniciandeveloped treatment guidelines, T1D device hackers deliberatively engage with clinicians’ conceptions and formulations of what constitutes “good treatment” and empower themselves in discussions about the effectiveness of treatment guidelines. Their non-compliance is, however, neither negligence, as implied by the medical category of patients who fail to comply with clinical orders, nor ignorance, but a productive and creative response to their embodied expertise, living with a chronic and potentially deadly condition. Our interlocutors’ explicit connections with the free and open source software principles suggests the formation of a “recursive public” (Kelty 2008) in diabetes research and care practices, from a patient-centered “medical model” to a diverse and divergent patient-led model. The philosophical and ethical underpinnings of the open source and collaborative strategies these patients draw upon radically reshape the principles that drive the commercial health industry and government regulatory structures. 
    more » « less
  5. null (Ed.)
    Background Decision aid developers have to convey complex task-specific numeric information in a way that minimizes bias and promotes understanding of the options available within a particular decision. Whereas our companion paper summarizes fundamental issues, this article focuses on more complex, task-specific aspects of presenting numeric information in patient decision aids. Methods As part of the International Patient Decision Aids Standards third evidence update, we gathered an expert panel of 9 international experts who revised and expanded the topics covered in the 2013 review working in groups of 2 to 3 to update the evidence, based on their expertise and targeted searches of the literature. The full panel then reviewed and provided additional revisions, reaching consensus on the final version. Results Five of the 10 topics addressed more complex task-specific issues. We found strong evidence for using independent event rates and/or incremental absolute risk differences for the effect size of test and screening outcomes. Simple visual formats can help to reduce common judgment biases and enhance comprehension but can be misleading if not well designed. Graph literacy can moderate the effectiveness of visual formats and hence should be considered in tool design. There is less evidence supporting the inclusion of personalized and interactive risk estimates. Discussion More complex numeric information. such as the size of the benefits and harms for decision options, can be better understood by using incremental absolute risk differences alongside well-designed visual formats that consider the graph literacy of the intended audience. More research is needed into when and how to use personalized and/or interactive risk estimates because their complexity and accessibility may affect their feasibility in clinical practice. 
    more » « less