skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distinguishing homolytic vs heterolytic bond dissociation of phenylsulfonium cations with localized active space methods
Modeling chemical reactions with quantum chemical methods is challenging when the electronic structure varies significantly throughout the reaction and when electronic excited states are involved. Multireference methods, such as complete active space self-consistent field (CASSCF), can handle these multiconfigurational situations. However, even if the size of the needed active space is affordable, in many cases, the active space does not change consistently from reactant to product, causing discontinuities in the potential energy surface. The localized active space SCF (LASSCF) is a cheaper alternative to CASSCF for strongly correlated systems with weakly correlated fragments. The method is used for the first time to study a chemical reaction, namely the bond dissociation of a mono-, di-, and triphenylsulfonium cation. LASSCF calculations generate smooth potential energy scans more easily than the corresponding, more computationally expensive CASSCF calculations while predicting similar bond dissociation energies. Our calculations suggest a homolytic bond cleavage for di- and triphenylsulfonium and a heterolytic pathway for monophenylsulfonium.  more » « less
Award ID(s):
2121044
PAR ID:
10591574
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Arxiv
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
161
Issue:
1
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a nonadiabatic molecular dynamics study of the ultrafast processes occurring in uracil upon UV light absorption, leading to electronic excitation and subsequent nonradiative decay. Previous studies have indicated that the mechanistic details of this process are drastically di!erent depending on whether the process takes place in the gas phase, acetonitrile, or water. However, such results have been produced using quantum chemical methods that did not incorporate both static and dynamic electron correlation. In order to assess the previously proposed mechanisms, we simulate the photodynamics of uracil in the three environments mentioned above using quantum-classical trajectories and, for solvated uracil, hybrid quantum mechanics/ molecular mechanics (QM/MM) models driven by the rotated multistate complete active space second-order perturbation (RMS-CASPT2) method. To do so, we exploit the gradient recently made available in OpenMolcas and compare the results to those obtained using the complete active space self-consistent field (CASSCF) method only accounting for static electron correlation. We show that RMS-CASPT2 produces, in general, a mechanistic picture di!erent from the one obtained at the CASSCF level but confirms the hypothesis advanced on the basis of previous ROKS and TDDFT studies thus highlighting the importance of incorporating dynamic electron correlation in the investigation of ultrafast electronic deactivation processes. 
    more » « less
  2. ABSTRACT The chemical bond is a fundamental concept in chemistry, and various models and descriptors have evolved since the advent of quantum mechanics. This study extends the overlap density and its topological descriptors (OP/TOP) to multiconfigurational wavefunctions. We discuss a comparative analysis of OP/TOP descriptors using CASSCF and DCD‐CAS(2) wavefunctions for a diverse range of molecular systems, including X–O bonds in X–OH (XH, Li, Na, H2B, H3C, H2N, HO, F) and Li–X′ (XF, Cl, and Br). Results show that OP/TOP aligns with bonding models like the quantum theory of atoms in molecules (QTAIM) and local vibrational modes theory, revealing insights such as overlap densities shifting towards the more electronegative atom in polar bonds. The Li–F dissociation profile using OP/TOP descriptors demonstrated sensitivity to ionic/neutral inversion during Li–F dissociation, highlighting their potential for elucidating complex bond phenomena and offering new avenues for understanding multiconfigurational chemical bond dynamics. 
    more » « less
  3. Neural Network potentials are developed which accurately make and break bonds for use in molecular simulations. We report a neural network potential that can describe the potential energy surface for carbon–carbon bond dissociation with less than 1 kcal mol−1 error compared to complete active space second-order perturbation theory (CASPT2), and maintains this accuracy for both the minimum energy path and molecular dynamic calculations up to 2000 K. We utilize a transfer learning algorithm to develop neural network potentials to generate potential energy surfaces; this method aims to use the minimum amount of CASPT2 data on small systems to train neural network potentials while maintaining excellent transferability to larger systems. First, we generate homolytic carbon–carbon bond dissociation data of small size alkanes with density functional theory (DFT) energies to train the potentials to accurately predict bond dissociation at the DFT level. Then, using transfer learning, we retrained the neural network potential to the CASPT2 level of accuracy. We demonstrate that the neural network potential only requires bond dissociation data of a few small alkanes to accurately predict bond dissociation energy in larger alkanes. We then perform additional training on molecular dynamic simulations to refine our neural network potentials to obtain high accuracy for general use in molecular simulation. This training algorithm is generally applicable to any type of bond or any level of theory and will be useful for the generation of new reactive neural network potentials. 
    more » « less
  4. The nonplanar character of graphene with a single carbon vacancy defect (SV) is investigated utilizing a pyrene-SV model system by way of complete active space self-consistent field theory (CASSCF) and multi-reference configuration interaction singles and doubles (MRCISD) calculations. Planar structures were optimized with both methods showing the 3B1 state as the ground state with three energetically close states within an energy range of 1 eV. These planar structures constitute saddle-points. However, upon following the out-of-plane imaginary frequency yields more stable (by 0.22 to 0.53 eV), but non-planar structures of CS symmetry. Of these, the 1A’ structure is the lowest in energy and is strongly deformed into an L-shape. Following a further out-of-plane imaginary frequency in the non-planar structures leads to the most stable, but most deformed singlet structure of C1 symmetry. In this structure a bond is formed between the carbon atom with the dangling bond and a carbon of the cyclopentadienyl ring. This bond stabilizes the structure by more than 3 eV compared to the planar 3B1 structure. Higher excited states were calculated at MR-CISD level showing a grouping of four states low in energy and higher states starting around 3 eV. 
    more » « less
  5. The frequency and diversity of posttranscriptional modifications add an additional layer of chemical complexity beyond canonical nucleic acid sequence. Methylations are particularly frequently occurring and often highly conserved throughout the kingdoms of life. However, the intricate functions of these modified nucleic acid constituents are often not fully understood. Systematic foundational research that reduces systems to their minimum constituents may aid in unraveling the complexities of nucleic acid biochemistry. Here, we examine the relative intrinsic N-glycosidic bond stabilities of guanosine and five naturally occurring methylguanosines (O2′-, 1-, 7-, N2,N2-di-, and N2,N2,O2′-trimethylguanosine) probed by energy-resolved collision-induced dissociation tandem mass spectrometry and complemented with quantum chemical calculations. Apparent glycosidic bond stability is generally found to increase with increasing methyl substitution (canonical < mono- < di- < trimethylated). Many biochemical transformations, including base excision repair mechanisms, involve protonation and/or noncovalent interactions to increase nucleobase leaving-group ability. The protonated gas-phase methylguanosines require less activation energy for glycosidic bond cleavage than their sodium cationized forms. However, methylation at the N7 position intrinsically weakens the glycosidic bond of 7-methylguanosine more significantly than subsequent cationization, and thus 7-methylguanosine is suggested to be under perpetually activated conditions. N7 methylation also alters the nucleoside geometric preferences relative to the other systems, including the nucleobase orientation in the neutral form, sugar puckering in the protonated form, and the preferred protonation and sodium cation binding sites. All of the methylated guanosines examined here are predicted to have proton affinities and gas-phase basicities that exceed that of canonical guanosine. Additionally, the proton affinity and gas-phase basicity trends exhibit a roughly inverse correlation with the apparent glycosidic bond stabilities. 
    more » « less