skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 8, 2025

Title: High-speed odor sensing using miniaturized electronic nose
Animals have evolved to rapidly detect and recognize brief and intermittent encounters with odor packages, exhibiting recognition capabilities within milliseconds. Artificial olfaction has faced challenges in achieving comparable results—existing solutions are either slow; or bulky, expensive, and power-intensive—limiting applicability in real-world scenarios for mobile robotics. Here, we introduce a miniaturized high-speed electronic nose, characterized by high-bandwidth sensor readouts, tightly controlled sensing parameters, and powerful algorithms. The system is evaluated on a high-fidelity odor delivery benchmark. We showcase successful classification of tens-of-millisecond odor pulses and demonstrate temporal pattern encoding of stimuli switching with up to 60 hertz. Those timescales are unprecedented in miniaturized low-power settings and demonstrably exceed the performance observed in mice. It is now possible to match the temporal resolution of animal olfaction in robotic systems. This will allow for addressing challenges in environmental and industrial monitoring, security, neuroscience, and beyond.  more » « less
Award ID(s):
2014217
PAR ID:
10591684
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
45
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This Perspective highlights the shift from the classic picture of olfaction as slow and static to a view in which dynamics play a critical role at many levels of sensing and behavior. Olfaction is now increasingly seen as a “wide-bandwidth temporal sense” (Ackels et al., 2021; Nagel et al., 2015). A parallel transition is occurring in odor-guided robot navigation, where it has been discovered that sensors can access temporal cues useful for navigation (Schmuker et al., 2016). We are only beginning to understand the implications of this paradigm-shift on our view of olfactory and olfacto-motor circuits. Below we review insights into the information encoded in turbulent odor plumes and shine light on how animals could access this information. We suggest that a key challenge for olfactory neuroscience is to re-interpret work based on static stimuli in the context of natural odor dynamics and actively exploring animals. 
    more » « less
  2. null (Ed.)
    Abstract Published evidence suggests that inherent rhythmically active or “bursting” primary olfactory receptor neurons (bORNs) in crustaceans have the previously undescribed functional property of encoding olfactory information by having their rhythmicity entrained by the odor stimulus. In order to determine whether such bORN-based encoding is a fundamental feature of olfaction that extends beyond crustaceans, we patch-clamped bORN-like ORNs in mice, characterized their dynamic properties, and show they align with the dynamic properties of lobster bORNs. We then characterized bORN-like activity by imaging the olfactory epithelium of OMP-GCaMP6f mice. Next, we showed rhythmic activity is not dependent upon the endogenous OR by patching ORNs in OR/GFP mice. Lastly, we showed the properties of bORN-like ORNs characterized in mice generalize to rats. Our findings suggest encoding odor time should be viewed as a fundamental feature of olfaction with the potential to be used to navigate odor plumes in animals as diverse as crustaceans and mammals. 
    more » « less
  3. Odor-guided navigation is an indispensable aspect of flying insects' behavior, facilitating crucial activities such as foraging and mating. The interaction between aerodynamics and olfaction plays a pivotal role in the odor-guided flight behaviors of insects, yet the interplay of these two functions remains incompletely understood. In this study, we developed a fully coupled three-way numerical solver, which solves the three-dimensional Navier–Stokes equations coupled with equations of motion for the passive flapping wings, and the odorant advection–diffusion equation. This numerical solver is applied to investigate the unsteady flow field and the odorant transport phenomena of a fruit fly model in odor-guided upwind surge flight over a broad spectrum of reduced frequencies (0.325–1.3) and Reynolds numbers (90–360). Our results uncover a complex dependency between flight velocity and odor plume perception, modulated by the reduced frequency of flapping flight. At low reduced frequencies, the flapping wings disrupt the odor plume, creating a saddle point of air flow near the insect's thorax. Conversely, at high reduced frequencies, the wing-induced flow generates a stagnation point, in addition to the saddle point, that alters the aerodynamic environment around the insect's antennae, thereby reducing odor sensitivity but increasing the sampling range. Moreover, an increase in Reynolds number was found to significantly enhance odor sensitivity due to the synergistic effects of greater odor diffusivity and stronger wing-induced flow. These insights hold considerable implications for the design of bio-inspired, odor-guided micro air vehicles in applications like surveillance and detection. 
    more » « less
  4. Flying insects are equipped with complex olfactory systems, which they utilize to seek food, identify mates, and evade predators. It is suspected that insects flap their wings to draw odor plumes toward their antennae, a behavior akin to mammals' sniffing, aimed at enhancing olfactory sensitivity. However, insects' wing kinematics change drastically as their flight speed increases, and it is unknown how these changes affect the insect's odorant perception. Addressing this gap in knowledge is crucial to a full understanding of the interplay between insects' aerodynamic performance and sensory perception. To this end, we simulated odor-tracking hawkmoth flight at 2 and 4 m/s using an in-house computational fluid dynamics solver. This solver incorporated both the Navier–Stokes equations that govern the flow, as well as the advection-diffusion equation that governs the odor transport process. Findings indicate that hawkmoths enhance odor intensity along their antennae using their wings, with peak odor intensity being 39% higher during 2 m/s flight compared to 4 m/s flight. This demonstrates there is a trade-off between rapid transport and olfaction, which is attributable to differences in wing kinematics between low- and high-speed flights. Despite literature suggesting hawkmoths are limited to steady forward flights at speeds below 5 m/s—about half of what is theoretically predicted based on body mass—this study reveals that slower flight speeds improve their olfactory capabilities during navigation. Our findings offer insights into the evolution of flight and sensory capabilities in hawkmoths, as well as provide inspiration for the development of bio-inspired odor-guided navigation technologies. 
    more » « less
  5. In order to survive, animals often need to navigate a complex odor landscape where odors can exist in airborne plumes. Several odor plume properties change with distance from the odor source, providing potential navigational cues to searching animals. Here, we focus on odor intermittency, a temporal odor plume property that measures the fraction of time odor is above a threshold at a given point within the plume and decreases with increasing distance from the odor source. We sought to determine if mice can use changes in intermittency to locate an odor source. To do so, we trained mice on an intermittency discrimination task. We establish that mice can discriminate odor plume samples of low and high intermittency and that the neural responses in the olfactory bulb can account for task performance and support intermittency encoding. Modulation of sniffing, a behavioral parameter that is highly dynamic during odor-guided navigation, affects both behavioral outcome on the intermittency discrimination task and neural representation of intermittency. Together, this work demonstrates that intermittency is an odor plume property that can inform olfactory search and more broadly supports the notion that mammalian odor-based navigation can be guided by temporal odor plume properties. 
    more » « less