Many undergraduate neuroscience trainees aspire to earn a PhD. In recent years the number, demographics, and previous experiences of PhD applicants in neuroscience has changed. This has necessitated both a reconsideration of admissions processes to ensure equity for an increasingly diverse applicant pool as well as renewed efforts to expand access to the training and research experiences required for admission to graduate programs. Here, we describe both facets of graduate school admissions by demystifying the process and providing faculty with tools and resources to help undergraduate students successfully navigate it. We discuss admissions requirements and processes at two graduate institutions, highlighting holistic approaches to evaluating students, the ever-increasing research experience expectations, and the decreasing reliance on the GRE. With a particular focus on improving equity, diversity, inclusion and belonging, we discuss resources for applying to graduate school that are available for students from underrepresented populations, including summer institutes and fellowship programs and intentional relationships with minority serving institutions (MSIs) to foster bi-directional engagement between undergraduate programs at MSIs and graduate institutions. With diverse perspectives as faculty involved in undergraduate education, graduate programs, and post-baccalaureate training programs, we provide recommendations and resources for how to help all trainees — especially those from populations underrepresented in the STEM workforce — succeed in the current graduate education admissions landscape. 
                        more » 
                        « less   
                    
                            
                            Memphis NeuroSTART Program: Promoting Student Success and Increasing the Diversity of Applicants to Neuroscience Graduate Programs
                        
                    
    
            With grant support from the Research Experience for Undergraduates (REU) program funded by the National Science Foundation (NSF) and the Awards to Stimulate and Support Undergraduate Research Experiences (ASSURE) program funded by the Department of Defense (DoD) Air Force Office of Scientific Research (AFOSR), we established a program intended to increase the number of underrepresented racial and ethnic minority (URM) and first-generation undergraduate students successfully applying to neuroscience and other STEM-related graduate programs. The Neuroscience Techniques and Research Training (NeuroSTART) Program aimed to increase the number of undergraduate students from the Memphis area involved in behavioral neuroscience research. In this two-semester program, students completed an empirical research project in a neuroscience lab, received individual mentoring from neuroscience faculty, became part of a STEM network, presented at research conferences, and attended specialized professional development seminars. In two cohorts of 15 students, 4 are PhD students in neuroscience-related programs or in medical school (27%), 4 are employed in neuroscience-related research facilities (27%), 3 are employed as clinical assistants (20%), and 1 is employed in the IT field (7%). The remaining three recently graduated and are planning a gap year prior to applying for admission to grad/medical school. The Memphis NeuroSTART program has provided valuable training to participants, making them competitive applicants for jobs in the health sciences and for admittance into graduate neuroscience programs. By providing this training to first-generation and URM students, the broader impact of this program was an increase in the diversity of the health sciences workforce, particularly those specializing in neuroscience-related research and treatment. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2051105
- PAR ID:
- 10591696
- Publisher / Repository:
- Journal of Neuroscience Education
- Date Published:
- Journal Name:
- Journal of Undergraduate Neuroscience Education
- Volume:
- 22
- Issue:
- 3
- ISSN:
- 1544-2896
- Page Range / eLocation ID:
- A246 to A255
- Subject(s) / Keyword(s):
- AFOSR ASSURE NSF REU STEM education first-generation college students minorities neuroscience research experience undergraduates underrepresented.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Undergraduate research is well recognized as an effective high-impact educational practice associated with student success in higher education. Actively engaging students in research experiences is considered as one of the several high-impact practices by many agencies including the American Chemical Society. Developing and maintaining an active undergraduate research program benefits both the faculty and students especially those from under-represented minority groups (URM). The infusion of research experiences into undergraduate curriculum enables students from all backgrounds to develop independent critical thinking skills, written and oral communications skills that are very important for successful careers in “STEM” area. Several strategies and activities such as a Peer Mentoring Program (PMP), funded research activities, the infusion of research into organic chemistry labs, undergraduate professional development, research group meetings, presentations at regional/national conferences, and publishing as co-authors on peer-review papers are vital in creating a welcoming research group that promotes the diversity, equity, and inclusion in organic chemistry education. The experiences working on funded research projects, presenting their research data at conferences and publishing papers as co-authors will greatly increase the under-represented minority (URM) students’ chance in landing a job or getting admitted into graduate/professional programs in STEM area.more » « less
- 
            null (Ed.)Undergraduate research opportunities have been demonstrated to promote recruitment, retention, and inclusion of students from underrepresented groups in STEM disciplines. The opportunity to engage in hands-on, discovery-based activities as part of a community helps students develop a strong self-identity in STEM and strengthens their self-efficacy in what can otherwise be daunting fields. Kansas State University has developed an array of undergraduate research opportunities, both in the academic year and summer, and has established a management infrastructure around these programs. The Graduate School, which hosts its own Summer Undergraduate Research Opportunity Program aimed at URM and first-generation college students, coordinates the leadership of the other grant-funded programs, and conducts a series of enrichment and networking activities for students from all the programs. These include professional development as well as primarily social sessions. The Kansas LSAMP, led by Kansas State University, created a summer program aimed at under-represented minority community college students enrolled in STEM fields to recruit them into research opportunities at K-State. There has been strong interest in the program, which incorporated university experience elements in addition to an introduction to STEM research and the four-year university. In the 5 years since the program’s inception, cohorts of nine to fourteen students came to K-State each year for eight-week experiences and took part in both cohort-based sessions and individual mentored research experiences. The two-fold focus of this program, Research Immersion: Pathways to STEM, has resulted in the majority of the students presenting a poster at a national conference and transferring to a STEM major at a four-year institution. Survey results showed that the program was successful at improving STEM identity and academic self-concepts. Qualitative feedback suggested that the two parts of the program worked together to increase interest and self confidence in STEM majors but also ensured that students connect with other students and felt comfortable in the transition to a 4-year institution.more » « less
- 
            With college advisory boards and potential employers consistently voicing their desire for engineers and scientists who can communicate well, work effectively in teams, and independently problem-solve, the Colleges of Engineering & Computer Science (ECS) and Natural Sciences and Mathematics (NSM) at Sacramento State University, a large, public, primarily undergraduate institution, have deployed two programs to explicitly address these skills for undergraduate science, technology, engineering, and mathematics (STEM) students. The goals of the NSF-funded Achieving STEM Persistence through Peer-Assisted Learning and Leadership Development (ASPIRE) project are to increase retention and decrease time to graduation for STEM students, as well as increase retention of women and underrepresented minorities (URM) in the STEM workforce by implementing evidence-based practices to promote student success during two critical transitions: 1) from lower-division to upper-division coursework in engineering; and 2) from upper-division coursework to an entry-level STEM career. ASPIRE aims to achieve these goals by: 1) adapting and implementing the NSM Peer Assisted Learning (PAL) program in gateway engineering courses; and 2) developing the Hornet Leadership Program which includes scaffolded opportunities for students to explore their leadership capacity and develop leadership skills. The main research questions for this study include: (1) Will the ECS PAL model and Hornet Leadership Program result in increased persistence and workforce readiness in STEM majors at a large, diverse university? (2) What attitude changes will this project have on students and faculty and the relationships between them? The first question is addressed through pre- and post-implementation student surveys and student course/GPA data. The second question is addressed through faculty surveys, faculty focus groups/interviews, and pre- and post-data from a faculty professional development workshop. In general, preliminary results from this study indicate the new ECS PAL program successfully attracts URM students and thus has the potential to support their persistence and STEM workforce readiness. Additionally, undergraduate students across both Colleges who participated in the inaugural Hornet Leadership Program gained non-technical skills and experiences directly linked to competitiveness and preparation for workforce entry and graduate programs. Finally, faculty surveys and the faculty professional development workshop indicate that faculty value student leadership development, but identify barriers to accomplishing this work.more » « less
- 
            This paper presents implementation details and findings of an NSF-funded S-STEM scholarship program consisting of many high-impact practices to recruit and retain students in the Physical Sciences and Mathematics programs, particularly first-generation and underrepresented minority students. In particular, we discuss how the program utilizes three key strategies to improve persistence and retention in a STEM pipeline including access to financial resources, community building, and faculty mentorship at critical transitions. While the rate of underrepresented minority (URM) students within the general Physical Sciences and Mathematics program on campus fluctuates at around 35%, this scholarship program recruits at a much higher rate of URM students at nearly 61%. Of the 44 students receiving support for at least one semester, 100% either graduated or continued with their original major, including students who discontinued from the program due to low GPA or lack of financial need. Among the program’s positive outcomes, students experienced increased motivation for success, and readiness for graduate studies or the workforce.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    