Abstract With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented by the topical workshop “Physics Beyond Colliders meets theory”, held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results.
more »
« less
SpECTRE
SpECTRE is an open-source code for multi-scale, multi-physics problems in astrophysics and gravitational physics. In the future, we hope that it can be applied to problems across discipline boundaries in fluid dynamics, geoscience, plasma physics, nuclear physics, and engineering. It runs at petascale and is designed for future exascale computers. SpECTRE is being developed in support of our collaborative Simulating eXtreme Spacetimes (SXS) research program into the multi-messenger astrophysics of neutron star mergers, core-collapse supernovae, and gamma-ray bursts.
more »
« less
- Award ID(s):
- 2407742
- PAR ID:
- 10591732
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Zenodo
- Date Published:
- Edition / Version:
- 2025.04.21
- Subject(s) / Keyword(s):
- Software Astrophysics General Relativity Numerical Relativity Multiphysics Gravitational Waves Discontinuous Galerkin Finite Difference Finite Volume
- Format(s):
- Medium: X Size: 277.3MB Other: zip
- Size(s):
- 277.3MB
- Right(s):
- MIT License
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Magnetic reconnection occurs ubiquitously in the universe and is often invoked to explain fast energy release and particle acceleration in high-energy astrophysics. The study of relativistic magnetic reconnection in the magnetically dominated regime has surged over the past two decades, revealing the physics of fast magnetic reconnection and nonthermal particle acceleration. Here we review these recent progresses, including the magnetohydrodynamic and collisionless reconnection dynamics as well as particle energization. The insights in astrophysical reconnection strongly connect to the development of magnetic reconnection in other areas, and further communication is greatly desired. We also provide a summary and discussion of key physics processes and frontier problems, toward a better understanding of the roles of magnetic reconnection in high-energy astrophysics.more » « less
-
Holz, Thorsten; Ristenpart, Thomas (Ed.)Spectre vulnerabilities violate our fundamental assumptions about architectural abstractions, allowing attackers to steal sensitive data despite previously state-of-the-art countermeasures. To defend against Spectre, developers of verification tools and compiler-based mitigations are forced to reason about microarchitectural details such as speculative execution. In order to aid developers with these attacks in a principled way, the research community has sought formal foundations for speculative execution upon which to rebuild provable security guarantees.This paper systematizes the community’s current knowledge about software verification and mitigation for Spectre. We study state-of-the-art software defenses, both with and without associated formal models, and use a cohesive framework to compare the security properties each defense provides. We explore a wide variety of tradeoffs in the expressiveness of formal frameworks, the complexity of defense tools, and the resulting security guarantees. As a result of our analysis, we suggest practical choices for developers of analysis and mitigation tools, and we identify several open problems in this area to guide future work on grounded software defenses.more » « less
-
Abstract Multi-messenger astrophysics has produced a wealth of data with much more to come in the future. This enormous data set will reveal new insights into the physics of core-collapse supernovae, neutron star mergers, and many other objects where it is actually possible, if not probable, that new physics is in operation. To tease out different possibilities, we will need to analyze signals from photons, neutrinos, gravitational waves, and chemical elements. This task is made all the more difficult when it is necessary to evolve the neutrino component of the radiation field and associated quantum-mechanical property of flavor in order to model the astrophysical system of interest—a numerical challenge that has not been addressed to this day. In this work, we take a step in this direction by adopting the technique of angular-integrated moments with a truncated tower of dynamical equations and a closure, convolving the flavor-transformation with spatial transport to evolve the neutrino radiation quantum field. We show that moments capture the dynamical features of fast flavor instabilities in a variety of systems, although our technique is by no means a universal blueprint for solving fast flavor transformation. To evaluate the effectiveness of our moment results, we compare to a more precise particle-in-cell method. Based on our results, we propose areas for improvement and application to complementary techniques in the future.more » « less
-
Abstract Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities.more » « less