Magnetic reconnection—a fundamental plasma physics process, where magnetic field lines of opposite polarity annihilate—is invoked in astrophysical plasmas as a powerful mechanism of nonthermal particle acceleration, able to explain fast-evolving, bright high-energy flares. Near black holes and neutron stars, reconnection occurs in the relativistic regime, in which the mean magnetic energy per particle exceeds the rest mass energy. This review reports recent advances in our understanding of the kinetic physics of relativistic reconnection:▪Kinetic simulations have elucidated the physics of plasma heating and nonthermal particle acceleration in relativistic reconnection (RR).▪The physics of radiative RR, with its self-consistent interplay between photons and reconnection-accelerated particles—a peculiarity of luminous, high-energy astrophysical sources—is the new frontier of research.▪RR plays a key role in global models of high-energy sources, in terms of both global-scale layers as well as reconnection sites generated as a by-product of local magnetohydrodynamic instabilities. We summarize themes of active investigation and future directions, emphasizing the role of upcoming observational capabilities, laboratory experiments, and new computational tools.
more »
« less
Magnetic Reconnection and Associated Particle Acceleration in High-Energy Astrophysics
Abstract Magnetic reconnection occurs ubiquitously in the universe and is often invoked to explain fast energy release and particle acceleration in high-energy astrophysics. The study of relativistic magnetic reconnection in the magnetically dominated regime has surged over the past two decades, revealing the physics of fast magnetic reconnection and nonthermal particle acceleration. Here we review these recent progresses, including the magnetohydrodynamic and collisionless reconnection dynamics as well as particle energization. The insights in astrophysical reconnection strongly connect to the development of magnetic reconnection in other areas, and further communication is greatly desired. We also provide a summary and discussion of key physics processes and frontier problems, toward a better understanding of the roles of magnetic reconnection in high-energy astrophysics.
more »
« less
- Award ID(s):
- 1902867
- PAR ID:
- 10512192
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Space Science Reviews
- Volume:
- 220
- Issue:
- 4
- ISSN:
- 0038-6308
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Magnetic reconnection is an important source of energetic particles in systems ranging from astrophysics to the laboratory. The large separation of spatiotemporal scales involved makes it critical to determine the minimum physical model containing the necessary physics for modeling particle acceleration. By resolving the energy gain from ideal and nonideal magnetohydrodynamic electric fields self-consistently in kinetic particle-in-cell simulations of reconnection, we conclusively show the dominant role of the nonideal field for the early stage of energization known as injection. The importance of the nonideal field increases with magnetization, guide field, and in three dimensions, indicating its general importance for reconnection in natural astrophysical systems. We obtain the statistical properties of the injection process from the simulations, paving the way for the development of extended MHD models capable of accurately modeling particle acceleration in large-scale systems. The novel analysis method developed in this study can be applied broadly to give new insight into a wide range of processes in plasma physics.more » « less
-
Abstract Magnetic reconnection regions in space and astrophysics are known as active particle acceleration sites. There is ample evidence showing that energetic particles can take a substantial amount of converted energy during magnetic reconnection. However, there has been a lack of studies understanding the backreaction of energetic particles at magnetohydrodynamical scales in magnetic reconnection. To address this, we have developed a new computational method to explore the feedback by nonthermal energetic particles. This approach considers the backreaction from these energetic particles by incorporating their pressure into magnetohydrodynamics (MHD) equations. The pressure of the energetic particles is evaluated from their distribution evolved through Parker’s transport equation, solved using stochastic differential equations (SDEs), so we coin the name MHD-SDE. Applying this method to low-βmagnetic reconnection simulations, we find that reconnection is capable of accelerating a large fraction of energetic particles that contain a substantial amount of energy. When the feedback from these particles is included, their pressure suppresses the compression structures generated by magnetic reconnection, thereby mediating particle energization. Consequently, the feedback from energetic particles results in a steeper power-law energy spectrum. These findings suggest that feedback from nonthermal energetic particles plays a crucial role in magnetic reconnection and particle acceleration.more » « less
-
Abstract Magnetic reconnection in the relativistic regime has been proposed as an important process for the efficient production of nonthermal particles and high-energy emission. Using fully kinetic particle-in-cell simulations, we investigate how the guide-field strength and domain size affect the characteristic spectral features and acceleration processes. We study two stages of acceleration: energization up until the injection energyγinjand further acceleration that generates a power-law spectrum. Stronger guide fields increase the power-law index andγinj, which suppresses acceleration efficiency. These quantities seemingly converge with increasing domain size, suggesting that our findings can be extended to large-scale systems. We find that three distinct mechanisms contribute to acceleration during injection: particle streaming along the parallel electric field, Fermi reflection, and the pickup process. The Fermi and pickup processes, related to the electric field perpendicular to the magnetic field, govern the injection for weak guide fields and larger domains. Meanwhile, parallel electric fields are important for injection in the strong guide-field regime. In the post-injection stage, we find that perpendicular electric fields dominate particle acceleration in the weak guide-field regime, whereas parallel electric fields control acceleration for strong guide fields. These findings will help explain the nonthermal acceleration and emission in high-energy astrophysics, including black hole jets and pulsar wind nebulae.more » « less
-
Abstract The past decade has seen an outstanding development of nonthermal particle acceleration in magnetic reconnection in magnetically dominated systems, with clear signatures of power-law energy distributions as a common outcome of first-principles kinetic simulations. Here we propose a semianalytical model for systematically investigating nonthermal particle acceleration in reconnection. We show particle energy distributions are well determined by particle injection, acceleration, and escape processes. Using a series of kinetic simulations, we accurately evaluate the energy- and time-dependent model coefficients. The resulting spectral characteristics, including the spectral index and lower and upper bounds of the power-law distribution, agree well with the simulation results. Finally, we apply the model to predict the power-law indices and break energies in astrophysical reconnection systems.more » « less
An official website of the United States government
