Abstract Arbuscular mycorrhizal fungi (AMF; Glomeromycota) are difficult to culture; therefore, establishing a robust amplicon-based approach to taxa identification is imperative to describe AMF diversity. Further, due to low and biased sampling of AMF taxa, molecular databases do not represent the breadth of AMF diversity, making database matching approaches suboptimal. Therefore, a full description of AMF diversity requires a tool to determine sequence-based placement in the Glomeromycota clade. Nonetheless, commonly used gene regions, including the SSU and ITS, do not enable reliable phylogenetic placement. Here, we present an improved database and pipeline for the phylogenetic determination of AMF using amplicons from the large subunit (LSU) rRNA gene. We improve our database and backbone tree by including additional outgroup sequences. We also improve an existing bioinformatics pipeline by aligning forward and reverse reads separately, using a universal alignment for all tree building, and implementing a BLAST screening prior to tree building to remove non-homologous sequences. Finally, we present a script to extract AMF belonging to 11 major families as well as an amplicon sequencing variant (ASV) version of our pipeline. We test the utility of the pipeline by testing the placement of known AMF, known non-AMF, andAcaulosporasp. spore sequences. This work represents the most comprehensive database and pipeline for phylogenetic placement of AMF LSU amplicon sequences within the Glomeromycota clade. 
                        more » 
                        « less   
                    
                            
                            An updated LSU database and pipeline for environmental DNA identification of arbuscular mycorrhizal fungi
                        
                    
    
            Abstract Recent work established a backbone reference tree and phylogenetic placement pipeline for identification of arbuscular mycorrhizal fungal (AMF) large subunit (LSU) rDNA environmental sequences. Our previously published pipeline allowed any environmental sequence to be identified as putative AMF or within one of the major families. Despite this contribution, difficulties in implementation of the pipeline remain. Here, we present an updated database and pipeline with (1) an expanded backbone tree to include four newly described genera and (2) several changes to improve ease and consistency of implementation. In particular, packages required for the pipeline are now installed as a single folder (conda environment) and the pipeline has been tested across three university computing clusters. This updated backbone tree and pipeline will enable broadened adoption by the community, advancing our understanding of these ubiquitous and ecologically important fungi. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10591766
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Mycorrhiza
- Volume:
- 34
- Issue:
- 4
- ISSN:
- 0940-6360
- Page Range / eLocation ID:
- 369 to 373
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Arbuscular mycorrhizal fungi (AMF) are widespread obligate symbionts of plants. This dynamic symbiosis plays a large role in successful plant performance, given that AMF help to ameliorate plant responses to abiotic and biotic stressors. Although the importance of this symbiosis is clear, less is known about what may be driving this symbiosis, the plant's need for nutrients or the excess of plant photosynthate being transferred to the AMF, information critical to assess the functionality of this relationship. Characterizing the AMF community along a natural plant productivity gradient is a first step in understanding how this symbiosis may vary across the landscape. We surveyed the AMF community diversity at 12 sites along a plant productivity gradient driven by soil nitrogen availability. We found that AMF diversity in soil environmental DNA significantly increased along with the growth of the host plantsAcerrubrumandA. saccharum., a widespread tree genus. These increases also coincided with a natural soil inorganic N availability gradient. We hypothesize photosynthate from the increased tree growth is being allocated to the belowground AMF community, leading to an increase in diversity. These findings contribute to understanding this complex symbiosis through the lens of AMF turnover and suggest that a more diverse AMF community is associated with increased host–plant performance.more » « less
- 
            Abstract BackgroundArbuscular mycorrhizal fungi (AMF) are beneficial root symbionts contributing to improved plant growth and development and resistance to abiotic and biotic stresses. Commercial bioinoculants containing AMF are widely considered as an alternative to agrochemicals in vineyards. However, their effects on grapevine plants grown in soil containing native communities of AMF are still poorly understood. In a greenhouse experiment, we evaluated the influence of five different bioinoculants on the composition of native AMF communities of young Cabernet Sauvignon vines grown in a non-sterile soil. Root colonization, leaf nitrogen concentration, plant biomass and root morphology were assessed, and AMF communities of inoculated and non-inoculated grapevine roots were profiled using high-throughput sequencing. ResultsContrary to our predictions, no differences in the microbiome of plants exposed to native AMF communities versus commercial AMF bioinoculants + native AMF communities were detected in roots. However, inoculation induced positive changes in root traits as well as increased AMF colonization, plant biomass, and leaf nitrogen. Most of these desirable functional traits were positively correlated with the relative abundance of operational taxonomic units identified asGlomus,RhizophagusandClaroideoglomusgenera. ConclusionThese results suggest synergistic interactions between commercial AMF bioinoculants and native AMF communities of roots to promote grapevine growth. Long-term studies with further genomics, metabolomics and physiological research are needed to provide a deeper understanding of the symbiotic interaction among grapevine roots, bioinoculants and natural AMF communities and their role to promote plant adaptation to current environmental concerns.more » « less
- 
            ABSTRACT Arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are essential to plant community diversity and ecosystem functioning. However, increasing human land use represents a major threat to native AMF globally. Characterizing the loss of AMF diversity remains challenging because many taxa are undescribed, resulting in poor documentation of their biogeography and family‐level disturbance sensitivity. We survey sites representing native and human‐altered ecosystems across the American continents—in Alaska, Kansas, and Brazil—to shed light on these gaps. Using a recently developed pipeline for phylogenetic placement of eDNA, we find evidence for three putative novel clades within the Glomeromycota, sister toEntrophosporaceae,Glomeraceae, andArchaeosporaceae, with evidence for geographic structuring. We further find that taxa in theDiversisporaceae,Glomeraceae, andEntrophosporaceaerelatively high families are overrepresented and more diverse in temperate samples. By contrast, the diversity of taxa that cannot be placed into a family is higher in tropical samples, suggesting that tropical sites harbor relatively high undescribed AMF diversity. Moreover, we find evidence thatEntrophosporaceaeis more tolerant, whileGlomeraceaeis more sensitive to disturbance. These results underscore the vast undescribed diversity of AMF while highlighting a way forward to systematically improve our understanding of AMF biogeography and response to human disturbance.more » « less
- 
            Abstract Whole‐genome sequencing data allow survey of variation from across the genome, reducing the constraint of balancing genome sub‐sampling with estimating recombination rates and linkage between sampled markers and target loci. As sequencing costs decrease, low‐coverage whole‐genome sequencing of pooled or indexed‐individual samples is commonly utilized to identify loci associated with phenotypes or environmental axes in non‐model organisms. There are, however, relatively few publicly available bioinformatic pipelines designed explicitly to analyse these types of data, and fewer still that process the raw sequencing data, provide useful metrics of quality control and then execute analyses. Here, we present an updated version of a bioinformatics pipeline calledPoolParty2that can effectively handle either pooled or indexed DNA samples and includes new features to improve computational efficiency. Using simulated data, we demonstrate the ability of our pipeline to recover segregating variants, estimate their allele frequencies accurately, and identify genomic regions harbouring loci under selection. Based on the simulated data set, we benchmark the efficacy of our pipeline with another bioinformatic suite,angsd, and illustrate the compatibility and complementarity of these suites usingangsdto generate genotype likelihoods as input for identifying linkage outlier regions using alignment files and variants provided byPoolParty2. Finally, we apply our updated pipeline to an empirical dataset of low‐coverage whole genomic data from population samples of Columbia River steelhead trout (Oncorhynchus mykiss), results from which demonstrate the genomic impacts of decades of artificial selection in a prominent hatchery stock. Thus, we not only demonstrate the utility ofPoolParty2for genomic studies that combine sequencing data from multiple individuals, but also illustrate how it compliments other bioinformatics resources such asangsd.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    