skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LiveDataLab: A Cloud-based Open Lab for Integrating Big Data Research, Education, and Applications
We present the vision of LiveDataLab and discuss the new research directions and application opportunities it opens up. LiveDataLab is envisioned to be a cloud-based open lab infrastructure where research, education, and application development in big data can be integrated in one unified platform, thus accelerating research, technology transfer, and workforce development in big data.  more » « less
Award ID(s):
2229612
PAR ID:
10591786
Author(s) / Creator(s):
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-6248-0
Page Range / eLocation ID:
8874 to 8878
Format(s):
Medium: X
Location:
Washington, DC, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a new initiative to create a training program or graduate-level course (cybertraining.umbc.edu) in big data applied to atmospheric sciences as application area and using high-performance computing as indispensable tool. The training consists of instruction in all three areas of "Big Data + HPC + Atmospheric Sciences" supported by teaching assistants and followed by faculty-guided project research in a multidisciplinary team of participants from each area. Participating graduate students, post-docs, and junior faculty from around the nation will be exposed to multidisciplinary research and have the opportunity for significant career impact. The paper discusses the challenges, proposed solutions, practical issues of the initiative, and how to integrate high-quality developmental program evaluation into the improvement of the initiative from the start to aid in ongoing development of the program. 
    more » « less
  2. Abstract The year 2022 marks the ten‐year anniversary of the White House's Big Data Research and Development Initiative. While this initiative, and the others it spawned,  helped to advance the many facets of data intensive research and discovery, obstacles and challenges still exist. If left unaddressed these obstacles will persist and at a minimum limit the potential of what can be achieved by harnessing the many new ways to collect, analyze, and share data and the insights that can be drawn from them. The opportunities and challenges related to Big Data in agriculture touch on all aspects of the general research data lifecycle; from instruments used to gather data, to advanced digital platforms used to store, analyze, and share data, and the innovative insights from using advanced computational methods. The eight papers included in this special issue were chosen in part because they highlight both the challenges and the opportunities that come from all stages of the data lifecycle common across agricultural research and development. These papers grew out of several workshops made possible by the support of the Midwest Regional Big Data Hub, which is sponsored by the National Science Foundation. 
    more » « less
  3. Abstract Modern science’s ability to produce, store, and analyze big datasets is changing the way that scientific research is practiced. Philosophers have only begun to comprehend the changed nature of scientific reasoning in this age of “big data.” We analyze data-focused practices in biology and climate modeling, identifying distinct species of data-centric science: phenomena-laden in biology and phenomena-agnostic in climate modeling, each better suited for its own domain of application, though each entail trade-offs. We argue that data-centric practices in science are not monolithic because the opportunities and challenges presented by big data vary across scientific domains. 
    more » « less
  4. Summary The interdisciplinary field of cyberGIS (geographic information science and systems (GIS) based on advanced cyberinfrastructure) has a major focus on data‐ and computation‐intensive geospatial analytics. The rapidly growing needs across many application and science domains for such analytics based on disparate geospatial big data poses significant challenges to conventional GIS approaches. This paper describes CyberGIS‐Jupyter, an innovative cyberGIS framework for achieving data‐intensive, reproducible, and scalable geospatial analytics using Jupyter Notebook based on ROGER, the first cyberGIS supercomputer. The framework adapts the Notebook with built‐in cyberGIS capabilities to accelerate gateway application development and sharing while associated data, analytics, and workflow runtime environments are encapsulated into application packages that can be elastically reproduced through cloud‐computing approaches. As a desirable outcome, data‐intensive and scalable geospatial analytics can be efficiently developed and improved and seamlessly reproduced among multidisciplinary users in a novel cyberGIS science gateway environment. 
    more » « less
  5. With the development of high-speed computers, networks, and huge storage, researchers can utilize a large volume and wide variety of materials data generated by experimental facilities and computations. The emergence of these big data and advanced analytical techniques has opened unprecedented opportunities for materials research. The discovery of many kinds of materials, such as energy-harvesting materials, structural materials, catalysts, optoelectronic materials, and magnetic materials, have been greatly accelerated through high-throughput screening. The utility of data-centric science for materials research is likely to grow significantly in the future. Unraveling the complexities inherent in big data could lead to novel design rules as well as new materials and functionalities. 
    more » « less