skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient backward x-ray emission in a finite-length plasma irradiated by a laser pulse of picosecond duration
Motivated by experiments employing picosecond-long, kilojoule laser pulses, we examined x-ray emission in a finite-length underdense plasma irradiated by such a pulse using two-dimensional particle-in-cell simulations. We found that, in addition to the expected forward emission, the plasma also efficiently emits in the backward direction. Our simulations reveal that the backward emission occurs when the laser exits the plasma. The longitudinal plasma electric field generated by the laser at the density down-ramp turns around some of the laser-accelerated electrons and re-accelerates them in the backward direction. As the electrons collide with the laser, they emit hard x rays. The energy conversion efficiency is comparable to that for the forward emission, but the effective source size is smaller. We show that the picosecond laser duration is required for achieving a spatial overlap between the laser and the backward energetic electrons. At peak laser intensity of 1.4×1020 W/cm2, backward-emitted photons (energies above 100 keV and 10° divergence angle) account for 2×10−5 of the incident laser energy. This conversion efficiency is three times higher than that for similarly selected forward-emitted photons. The source size of the backward photons (5 μm) is three times smaller than the source size of the forward photons.  more » « less
Award ID(s):
2206777
PAR ID:
10591941
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Plasmas
Volume:
31
Issue:
11
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hard x-rays produced by intense laser-produced fast electrons interacting with solids are a vital source for producing radiographs of high-density objects and implosion cores for inertial confinement fusion. Accurate calculation of hard x-ray sources requires a three-dimensional (3D) simulation geometry that fully models the electron transport dynamics, including electron recirculation and the generation of absolute photon yields. To date, 3D simulations of laser-produced bremsstrahlung photons over tens of picoseconds and code benchmarking have not been performed definitively. In this study, we characterize sub-picosecond laser-produced fast electrons by modeling angularly resolved bremsstrahlung measurements for refluxing and non-refluxing targets using the 3D hybrid particle-in-cell (PIC), Large Scale Plasma code. Bremsstrahlung radiation and escaped electron data were obtained by focusing a 50-TW Leopard laser (15 J, 0.35 ps, 2 × 1019 W/cm2) on a 100-μm-thick Cu foil and a Cu with a large plastic backing (Cu–CH target). Data for both the Cu and Cu–CH targets were reproduced for simulations with a given set of electron parameters. Comparison of the simulations revealed that the hard x-ray emission from the Cu target was significantly longer in duration than that from the Cu–CH target. The benchmarked hybrid PIC code could prove to be a powerful tool in the design and optimization of time- and angular-dependent bremsstrahlung sources for flash x-ray and gamma-ray radiography. 
    more » « less
  2. We are developing an X-ray source for radiography of high-energy density (HED) experiments by passing a picosecond, relativistic laser beam through an underdense plasma to generate a relativistic beam of electrons. These electrons, in turn, generate bright, (1010 photon/keV/sr), high energy (10 keV - 1 MeV) X-rays. Over the years, this X-ray platform has been demonstrated on the Titan, Omega EP, and NIF-ARC lasers. This paper gives the present state of the field and argues that the platform has reached a level of maturity where the X-rays produced using this novel platform have the potential to find radiographic applications in a broad range of fields. Index Terms—X-ray, High Energy Density Science (HEDS), Self-Modulated Plasma Instability, NIF, OMEGA, Backlighter 
    more » « less
  3. Abstract We investigate the mechanisms responsible for single-lobed versus double-lobed angular distributions of emitted γ-rays in laser-irradiated plasmas, focusing on how direct laser acceleration (DLA) shapes the emission profile. Using test-particle calculations, we show that the efficiency of DLA plays a central role. In the inefficient DLA regime, electrons rapidly gain and lose energy within a single laser cycle, resulting in a double-lobed emission profile heavily influenced by laser fields. In contrast, in the efficient DLA regime, electrons steadily accumulate energy over multiple laser cycles, achieving much higher energies and emitting orders of magnitude more energy. This emission is intensely collimated and results in single-lobed profiles dominated by quasi-static azimuthal magnetic fields in the plasma. Particle-in-cell simulations demonstrate that lower-density targets create favorable conditions for some electrons to enter the efficient DLA regime. These electrons can dominate the emission, transforming the overall profile from double-lobed to single-lobed, even though inefficient DLA electrons remain present. These findings provide valuable insights for optimizing laser-driven γ-ray sources for applications requiring high-intensity, well-collimated beams. 
    more » « less
  4. Abstract High-intensity, short-pulse lasers are crucial for generating energetic electrons that produce high-energy-density (HED) states in matter, offering potential applications in igniting dense fusion fuels for fast ignition laser fusion. High-density targets heated by these electrons exhibit spatially non-uniform and highly transient conditions, which have been challenging to characterize due to limitations in diagnostics that provide simultaneous high spatial and temporal resolution. Here, we employ an X-ray Free Electron Laser (XFEL) to achieve spatiotemporally resolved measurements at sub-micron and femtosecond scales on a solid-density copper foil heated by laser-driven fast electrons. Our X-ray transmission imaging reveals the formation of a solid-density hot plasma localized to the laser spot size, surrounded by Fermi degenerate, warm dense matter within a picosecond, and the energy relaxation occurring within the hot plasma over tens of picoseconds. These results validate 2D particle-in-cell simulations incorporating atomic processes and provide insights into the energy transfer mechanisms beyond current simulation capabilities. This work significantly advances our understanding of rapid fast electron heating and energy relaxation in solid-density matter, serving as a key stepping stone towards efficient high-density plasma heating and furthering the fields of HED science and inertial fusion energy research using intense, short-pulse lasers. 
    more » « less
  5. Light emission from biased tunnel junctions has recently gained much attention owing to its unique potential to create ultracompact optical sources with terahertz modulation bandwidth1,2,3,4,5. The emission originates from an inelastic electron tunnelling process in which electronic energy is transferred to surface plasmon polaritons and subsequently converted to radiation photons by an optical antenna. Because most of the electrons tunnel elastically, the emission efficiency is typically about 10−5–10−4. Here, we demonstrate efficient light generation from enhanced inelastic tunnelling using nanocrystals assembled into metal–insulator–metal junctions. The colour of the emitted light is determined by the optical antenna and thus can be tuned by the geometry of the junction structures. The efficiency of far-field free-space light generation reaches ~2%, showing an improvement of two orders of magnitude over previous work3,4. This brings on-chip ultrafast and ultracompact light sources one step closer to reality. 
    more » « less