Abstract We analyze three substorms that occur on (1) 9 March 2008 05:14 UT, (2) 26 February 2008 04:05 UT, and (3) 26 February 2008 04:55 UT. Using ACE solar wind velocity and interplanetary magnetic fieldBzvalues, we calculate the rectified (southwardBz) solar wind voltage propagated to the magnetosphere. The solar wind conditions for the two events were vastly different, 300 kV for 9 March 2008 substorm, compared to 50 kV for 26 February 2008. The voltage is input to a nonlinear physics‐based model of the magnetosphere called WINDMI. The output is the westward auroral electrojet current which is proportional to the auroral electrojet (AL) index from World Data Center for Geomagnetism Kyoto and the SuperMAG auroral electrojet index (SML). Substorm onset times are obtained from the superMAG substorm database, Pu et al. (2010,https://doi.org/10.1029/2009JA014217), Lui (2011,https://doi.org/10.1029/2010JA016078) and synchronized to Time History of Events and Macroscale Interactions during Substorms satellite data. The timing of onset, model parameters, and intermediate state space variables are analyzed. The model onsets occurred about 5 to 10 min earlier than the reported onsets. Onsets occurred when the geotail current in the WINDMI model reached a critical threshold of 6.2 MA for the 9 March 2008 event, while, in contrast, a critical threshold of 2.1 MA was obtained for the two 26 February 2008 events. The model estimates 1.99 PJ of total energy transfer during the 9 March 2008 event, with 0.95 PJ deposited in the ionosphere. The smaller events on 26 February 2008 resulted in a total energy transfer of 0.37 PJ according to the model, with 0.095 PJ deposited in the ionosphere. 
                        more » 
                        « less   
                    
                            
                            Imbalanced Regression Artificial Neural Network Model for Auroral Electrojet Indices (IRANNA): Can We Predict Strong Events?
                        
                    
    
            Abstract We develop an Imbalanced Regression Artificial Neural Network model for the Auroral electrojet index (IRANNA) to predict the SuperMAG SML index, addressing the heavily imbalanced distribution of the SML data set. The data set contains mostly quiet‐time values of lesser importance and very few strong‐to‐extreme values of interest, such as those associated with super substorms. Traditional prediction models, which minimize mean squared error uniformly across the whole data set, are often skewed by this imbalance, prioritizing the lower, quiet‐time values and consequently underestimating strong geomagnetic events. The IRANNA model addresses this issue by using a customized weighting scheme in the loss function, enabling it to predict strong‐to‐extreme events accurately for the first time. The model takes solar wind parameters as inputs and predicts the logarithm of the absolute SML values. It does not rely on past values of the SML index, differentiating it from other models that use historical data for prediction. The model has demonstrated its ability to predict the peak amplitudes of strong‐to‐extreme events across various statistical analyses, event studies, and virtual experiments. Despite this success, challenges remain, particularly during localized electrojet events and when upstream solar wind data propagation is unreliable. This study emphasizes the importance of using imbalanced regression techniques, especially in space physics, where data sets are inherently skewed. It also highlights the potential of the IRANNA model to provide valuable insights into the magnetosphere's response to solar wind driving, improving space weather forecasting and offering new tools for investigating magnetospheric dynamics. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2247256
- PAR ID:
- 10591962
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Space Weather
- Volume:
- 23
- Issue:
- 5
- ISSN:
- 1542-7390
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We investigate the applicability and performance of the plasma physics based WINDMI model to the analysis and identification of substorm onsets. There are several substorm onset criteria that have been developed into event lists, either from auroral observations or from auroral electrojet features. Five of these substorm onset lists are available at the SuperMAG website. We analyze these lists, aggregate them and use the WINDMI model to assess the identified events, emphasizing the loading/unloading mechanism in substorm dynamics. The WINDMI model employs eight differential equations utilizing solar wind data measured at L1 by the ACE satellite as input to generate outputs such as the magnetotail current, the ring current and the field‐aligned currents (FACs). In particular, the WINDMI model current output represents the westward auroral electrojet, which is related to the substorm SML index. We analyze a decade of solar wind and substorm onset data from 1998 to 2007, encompassing 39,863 onsets. Our findings reveal a significant correlation, with WINDMI‐derived enhancements in FAC coinciding with the identified substorm events approximately 32% of the time. This suggests that a substantial proportion of substorms may be attributed to solar wind driving that results in the loading and unloading of energy in the magnetotail.more » « less
- 
            Abstract Whistler‐mode chorus waves play an essential role in the acceleration and loss of energetic electrons in the Earth’s inner magnetosphere, with the more intense waves producing the most dramatic effects. However, it is challenging to predict the amplitude of strong chorus waves due to the imbalanced nature of the data set, that is, there are many more non‐chorus data points than strong chorus waves. Thus, traditional models usually underestimate chorus wave amplitudes significantly during active times. Using an imbalanced regressive (IR) method, we develop a neural network model of lower‐band (LB) chorus waves using 7‐year observations from the EMFISIS instrument onboard Van Allen Probes. The feature selection process suggests that the auroral electrojet index alone captures most of the variations of chorus waves. The large amplitude of strong chorus waves can be predicted for the first time. Furthermore, our model shows that the equatorial LB chorus’s spatiotemporal evolution is similar to the drift path of substorm‐injected electrons. We also show that the chorus waves have a peak amplitude at the equator in the source MLT near midnight, but toward noon, there is a local minimum in amplitude at the equator with two off‐equator amplitude peaks in both hemispheres, likely caused by the bifurcated drift paths of substorm injections on the dayside. The IR‐based chorus model will improve radiation belt prediction by providing chorus wave distributions, especially storm‐time strong chorus. Since data imbalance is ubiquitous and inherent in space physics and other physical systems, imbalanced regressive methods deserve more attention in space physics.more » « less
- 
            Predicting Geostationary (GOES) 4.1–30 keV Electron Flux Over All MLT Using LEEMYR Regression ModelsAbstract Regression models (LEEMYR: Low Energy Electron MLT geosYnchronous orbit Regression) predict hourly 4.1–30 keV electron flux at geostationary orbit (GOES‐16) using solar wind, IMF, and geomagnetic index parameters. Multiplicative interaction and polynomial terms describe synergistic and nonlinear effects. We reduce predictors to an optimal set using stepwise regression, resulting in models with validation comparable to a neural network. Models predict 1, 3, 6, 12, and 24 hr into the future. Validation correlations are as high as 0.78 (4.1 and 11 keV, 1 hr prediction) and Heidke Skill scores (HSS) up to 0.66. A 3 hr ahead prediction is more practical, with slightly lower validation correlation (0.75) and HSS (0.61). The addition of location (MLT: magnetic local time) as a covariate, including multiplicative interaction terms, accounts for location‐dependent flux differences and variation of parameter influence, and allows prediction over the full orbit. Adding a substorm index (SME) provides minimal increase in validation correlation (0.81) showing that other parameters are good proxies for an unavailable real time substorm index. Prediction intervals on individual values provide more accurate assessments of model quality than confidence intervals on the mean values. An inverse N‐weighted least squares approach is impractical as it increases false positive warnings. Physical interpretations are not possible as spurious correlations due to common cycles are not removed. However,SME, Bz, Kp, and Dst are the highest correlates of electron flux, with solar wind velocity, density, and pressure, and IMF magnitude being less well correlated.more » « less
- 
            Abstract Photospheric magnetic field parameters are frequently used to analyze and predict solar events. Observation of these parameters over time, i.e., representing solar events by multivariate time-series (MVTS) data, can determine relationships between magnetic field states in active regions and extreme solar events, e.g., solar flares. We can improve our understanding of these events by selecting the most relevant parameters that give the highest predictive performance. In this study, we propose a two-step incremental feature selection method for MVTS data using a deep-learning model based on long short-term memory (LSTM) networks. First, each MVTS feature (magnetic field parameter) is evaluated individually by a univariate sequence classifier utilizing an LSTM network. Then, the top performing features are combined to produce input for an LSTM-based multivariate sequence classifier. Finally, we tested the discrimination ability of the selected features by training downstream classifiers, e.g., Minimally Random Convolutional Kernel Transform and support vector machine. We performed our experiments using a benchmark data set for flare prediction known as Space Weather Analytics for Solar Flares. We compared our proposed method with three other baseline feature selection methods and demonstrated that our method selects more discriminatory features compared to other methods. Due to the imbalanced nature of the data, primarily caused by the rarity of minority flare classes (e.g., the X and M classes), we used the true skill statistic as the evaluation metric. Finally, we reported the set of photospheric magnetic field parameters that give the highest discrimination performance in predicting flare classes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
