skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electron energization in reconnection: Eulerian vs Lagrangian perspectives
Particle energization due to magnetic reconnection is an important unsolved problem for myriad space and astrophysical plasmas. Electron energization in magnetic reconnection has traditionally been examined from a particle, or Lagrangian, perspective using particle-in-cell (PIC) simulations. Guiding-center analyses of ensembles of PIC particles have suggested that Fermi (curvature drift) acceleration and direct acceleration via the reconnection electric field are the primary electron energization mechanisms. However, both PIC guiding-center ensemble analyses and spacecraft observations are performed in an Eulerian perspective. For this work, we employ the continuum Vlasov–Maxwell solver within the Gkeyll simulation framework to reexamine electron energization from a kinetic continuum, Eulerian, perspective. We separately examine the contribution of each drift energization component to determine the dominant electron energization mechanisms in a moderate guide-field Gkeyll reconnection simulation. In the Eulerian perspective, we find that the diamagnetic and agyrotropic drifts are the primary electron energization mechanisms away from the reconnection x-point, where direct acceleration dominates. We compare the Eulerian (Vlasov Gkeyll) results with the wisdom gained from Lagrangian (PIC) analyses.  more » « less
Award ID(s):
1842638 2209471 1842561
PAR ID:
10591966
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Plasmas
Volume:
31
Issue:
2
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Using the field–particle correlation technique, we examine the particle energization in a three-dimensional (one spatial dimension and two velocity dimensions; 1D-2V) continuum Vlasov–Maxwell simulation of a perpendicular magnetized collisionless shock. The combination of the field–particle correlation technique with the high-fidelity representation of the particle distribution function provided by a direct discretization of the Vlasov equation allows us to ascertain the details of the exchange of energy between the electromagnetic fields and the particles in phase space. We identify the velocity-space signatures of shock-drift acceleration of the ions and adiabatic heating of the electrons arising from the perpendicular collisionless shock by constructing a simplified model with the minimum ingredients necessary to produce the observed energization signatures in the self-consistent Vlasov–Maxwell simulation. We are thus able to completely characterize the energy transfer in the perpendicular collisionless shock considered here and provide predictions for the application of the field–particle correlation technique to spacecraft measurements of collisionless shocks. 
    more » « less
  2. null (Ed.)
    ABSTRACT The physical foundations of the dissipation of energy and the associated heating in weakly collisional plasmas are poorly understood. Here, we compare and contrast several measures that have been used to characterize energy dissipation and kinetic-scale conversion in plasmas by means of a suite of kinetic numerical simulations describing both magnetic reconnection and decaying plasma turbulence. We adopt three different numerical codes that can also include interparticle collisions: the fully kinetic particle-in-cell vpic, the fully kinetic continuum Gkeyll, and the Eulerian Hybrid Vlasov–Maxwell (HVM) code. We differentiate between (i) four energy-based parameters, whose definition is related to energy transfer in a fluid description of a plasma, and (ii) four distribution function-based parameters, requiring knowledge of the particle velocity distribution function. There is an overall agreement between the dissipation measures obtained in the PIC and continuum reconnection simulations, with slight differences due to the presence/absence of secondary islands in the two simulations. There are also many qualitative similarities between the signatures in the reconnection simulations and the self-consistent current sheets that form in turbulence, although the latter exhibits significant variations compared to the reconnection results. All the parameters confirm that dissipation occurs close to regions of intense magnetic stresses, thus exhibiting local correlation. The distribution function-based measures show a broader width compared to energy-based proxies, suggesting that energy transfer is co-localized at coherent structures, but can affect the particle distribution function in wider regions. The effect of interparticle collisions on these parameters is finally discussed. 
    more » « less
  3. Magnetic reconnection plays an important role in the release of magnetic energy and consequent energization of particles in collisionless plasmas. Energy transfer in collisionless magnetic reconnection is inherently a two-step process: reversible, collisionless energization of particles by the electric field, followed by collisional thermalization of that energy, leading to irreversible plasma heating. Gyrokinetic numerical simulations are used to explore the first step of electron energization, and we generate the first examples of field–particle correlation signatures of electron energization in 2D strong-guide-field collisionless magnetic reconnection. We determine these velocity space signatures at the x-point and in the exhaust, the regions of the reconnection geometry in which the electron energization primarily occurs. Modeling of these velocity–space signatures shows that, in the strong-guide-field limit, the energization of electrons occurs through bulk acceleration of the out-of-plane electron flow by the parallel electric field that drives the reconnection, a non-resonant mechanism of energization. We explore the variation of these velocity–space signatures over the plasma beta range 0.01≤βi≤1. Our analysis goes beyond the fluid picture of the plasma dynamics and exploits the kinetic features of electron energization in the exhaust region to propose a single-point diagnostic, which can potentially identify a reconnection exhaust region using spacecraft observations. 
    more » « less
  4. Magnetic reconnection plays an important role in the release of magnetic energy and consequent energization of particles in collisionless plasmas. Energy transfer in collisionless magnetic reconnection is inherently a two-step process: reversible, collisionless energization of particles by the electric field, followed by collisional thermalization of that energy, leading to irreversible plasma heating. Gyrokinetic numerical simulations are used to explore the first step of electron energization, and we generate the first examples of field-particle correlation (FPC) signatures of electron energization in 2D strong-guide-field collisionless magnetic reconnection. We determine these velocity space signatures at the x-point and in the exhaust, the regions of the reconnection geometry in which the electron energization primarily occurs. Modeling of these velocity-space signatures shows that, in the strong-guide-field limit, the energization of electrons occurs through bulk acceleration of the out-of-plane electron flow by parallel electric field that drives the reconnection, a non-resonant mechanism of energization. We explore the variation of these velocity-space signatures over the plasma beta range 0.01 < beta_i < 1. Our analysis goes beyond the fluid picture of the plasma dynamics and exploits the kinetic features of electron energization in the exhaust region to propose a single-point diagnostic which can potentially identify a reconnection exhaust region using spacecraft observations. 
    more » « less
  5. Abstract During magnetospheric substorms, plasma from magnetic reconnection in the magnetotail is thought to reach the inner magnetosphere and form a partial ring current. We simulate this process using a fully kinetic 3D particle‐in‐cell (PIC) numerical code along with a global magnetohydrodynamics (MHD) model. The PIC simulation extends from the solar wind outside the bow shock to beyond the reconnection region in the tail, while the MHD code extends much further and is run for nominal solar wind parameters and a southward interplanetary magnetic field. By the end of the PIC calculation, ions and electrons from the tail reconnection reach the inner magnetosphere and form a partial ring current and diamagnetic current. The primary source of particles to the inner magnetosphere is bursty bulk flows (BBFs) that originate from a complex pattern of reconnection in the near‐Earth magnetotail at to . Most ion acceleration occurs in this region, gaining from 10 to 50 keV as they traverse the sites of active reconnection. Electrons jet away from the reconnection region much faster than the ions, setting up an ambipolar electric field allowing the ions to catch up after approximately 10 ion inertial lengths. The initial energy flux in the BBFs is mainly kinetic energy flux from the ions, but as they move earthward, the energy flux changes to enthalpy flux at the ring current. The power delivered from the tail reconnection in the simulation to the inner magnetosphere is  W, which is consistent with observations. 
    more » « less