skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A statistical study of three-second foreshock ULF waves observed by the Magnetospheric Multiscale mission
We perform a statistical study of 3-s ultra-low frequency (ULF) waves using Magnetospheric Multiscale observations in the Earth's foreshock region. The average phase velocity in the plasma rest frame is determined to be anti-sunward, and the intrinsic polarization is right-handed. We further examine the linear instability conditions based on the drift-bi-Maxwellian distribution functions according to the observed plasma conditions. The resulting instability is a solution to the common dispersion equation of the ion/ion right-hand non-resonant and left-hand resonant instabilities. The predicted wave propagation is also predominantly anti-sunward. The cyclotron resonant conditions of the solar wind and backstreaming beam ions are evaluated, and we find that, in some cases, the anti-sunward propagating waves can be resonant with beam ions, which was overlooked in previous studies. The study suggests that the dispersion equation provides the 3-s ULF waves a fundamental explanation that unifies a rich variety of resonant conditions.  more » « less
Award ID(s):
2010231
PAR ID:
10592007
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Plasmas
Volume:
28
Issue:
8
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The nature of the 3‐s ultralow frequency (ULF) wave in the Earth's foreshock region and the associated wave‐particle interaction are not yet well understood. We investigate the 3‐s ULF waves using Magnetospheric Multiscale (MMS) observations. By combining the plasma rest frame wave properties obtained from multiple methods with the instability analysis based on the velocity distribution in the linear wave stage, the ULF wave is determined to be due to the ion/ion nonresonant mode instability. The interaction between the wave and ions is analyzed using the phase relationship between the transverse wave fields and ion velocities and using the longitudinal momentum equation. During the stage when ULF waves have sinusoidal waveforms up to |dB|/|B0| ~ 3, wheredBis the wave magnetic field andB0is the background magnetic field, the wave electric fields perpendicular toB0do negative work to solar wind ions; alongB0, a longitudinal electric field develops, but theV × Bforce is stronger and leads to solar wind ion deceleration. During the same wave stage, the backstreaming beam ions gain energy from the transverse wave fields and get deceleration alongB0by the longitudinal electric field. The ULF wave leads to electron heating, preferentially in the direction perpendicular to the local magnetic field. Secondary waves are generated within the ULF waveforms, including whistler waves near half of the electron cyclotron frequency, high‐frequency electrostatic waves, and magnetosonic whistler waves. The work improves the understanding of the nature of 3‐s ULF waves and the associated wave‐particle interaction. 
    more » « less
  2. ABSTRACT Ion beam-driven instabilities in a collisionless space plasma with low β, i.e. low plasma and magnetic pressure ratio, are investigated using particle-in-cell (PIC) simulations. Specifically, the effects of different ion drift velocities on the development of Buneman and resonant electromagnetic (EM) right-handed (RH) ion beam instabilities are studied. Our simulations reveal that both instabilities can be driven when the ion beam drift exceeds the theoretical thresholds. The Buneman instability, which is weakly triggered initially, dissipates only a small fraction of the kinetic energy of the ion beam while causing significant electron heating, owing to the small electron-ion mass ratio. However, we find that the ion beam-driven Buneman instability is quenched effectively by the resonant EM RH ion beam instability. Instead, the resonant EM RH ion beam instability dominates when the ion drift velocity is larger than the Alfvén speed, leading to the generation of RH Alfvén waves and RH whistler waves. We find that the intensity of Alfvén waves decreases with decrease of ion beam drift velocity, while the intensity of whistler waves increases. Our results provide new insights into the complex interplay between ion beams and plasma instabilities in low β collisionless space plasmas. 
    more » « less
  3. Ultra-Low-Frequency (ULF) waves provide a means for the rapid propagation of energy and field-aligned current in planetary magnetospheres. At Earth, the ULF frequency range is usually defined as including waves with periods of 0.2–600 s; however, at Jupiter these waves can extend to periods of tens of minutes. In both magnetospheres, shear mode Alfvén waves can form field line resonances that exist between the ionospheres, with periods of a few minutes at Earth and a few tens of minutes at Jupiter. A major distinction between these two magnetospheres is in the density distribution. Earth has a dense ionosphere full of heavy ions, an extended, cold plasmasphere and a relatively low-density plasma sheet. In contrast, at Jupiter, the ionosphere is largely hydrogen (both in atomic form and in the H 3 + molecular ion), there is no appreciable plasmasphere and the plasma disk is dense and populated with heavy ions (largely sulfur and oxygen) originating at the moon Io and to some extent from other moons. As at Earth, the sharp Alfvén speed gradient above the ionosphere forms an ionospheric Alfvén resonator at Jupiter with periods of seconds. Furthermore, the high-latitude lobes at Jupiter have very low density and a resonant structure can be formed by waves bouncing between the ionosphere and the dense plasma disk. This structure leads to periods of tens of seconds. Finally, the dense Io plasma torus and plasma sheet provide conditions for compressional cavity modes to form in this region. Thus, the structure of the field line resonance modes is quite different at the two planets. Implications of these resonances on auroral particle acceleration will be discussed. 
    more » « less
  4. The Kelvin-Helmholtz instability (KHI) and its effects relating to the transfer of energy and mass from the solar wind into the magnetosphere remain an important focus of magnetospheric physics. One such effect is the generation of Pc4-Pc5 ultra low frequency (ULF) waves (periods of 45–600 s). On July 3, 2007 at ∼ 0500 magnetic local time the Cluster space mission encountered Pc4 frequency Kelvin-Helmholtz waves (KHWs) at the high latitude magnetopause with signatures of persistent vortices. Such signatures included bipolar fluctuations of the magnetic field normal component associated with a total pressure increase and rapid change in density at vortex edges; oscillations of magnetosheath and magnetospheric plasma populations; existence of fast-moving, low-density, mixed plasma; quasi-periodic oscillations of the boundary normal and an anti-phase relation between the normal and parallel components of the boundary velocity. The event occurred during a period of southward polarity of the interplanetary magnetic field according to the OMNI data and THEMIS observations at the subsolar point. Several of the KHI vortices were associated with reconnection indicated by the Walén relation, the presence of deHoffman-Teller frames, field-aligned ion beams observed together with bipolar fluctuations in the normal magnetic field component, and crescent ion distributions. Global magnetohydrodynamic simulation of the event also resulted in KHWs at the magnetopause. The observed KHWs associated with reconnection coincided with recorded ULF waves at the ground whose properties suggest that they were driven by those waves. Such properties were the location of Cluster’s magnetic foot point, the Pc4 frequency, and the solar wind conditions. 
    more » « less
  5. Abstract Energetic electron losses in the Earth's inner magnetosphere are dominated by outward radial diffusion and scattering into the atmosphere by various electromagnetic waves. The two most important wave modes responsible for electron scattering are electromagnetic ion cyclotron (EMIC) waves and whistler‐mode waves (whistler waves) that, acting together, can provide rapid electron losses over a wide energy range from few keV to few MeV. Wave‐particle resonant interaction resulting in electron scattering is well described by quasi‐linear diffusion theory using the cold plasma dispersion, whereas the effects of nonlinear resonances and hot plasma dispersion are less well understood. This study aims to examine these effects and estimate their significance for a particular event during which both wave modes are quasi‐periodically modulated by ultra‐low‐frequency (ULF) compressional waves. Such modulation of EMIC and whistler wave amplitudes provides a unique opportunity to compare nonlinear resonant scattering (important for the most intense waves) with quasi‐linear diffusion (dominant for low‐intensity waves). The same modulation of plasma properties allows better characterization of hot plasma effects on the EMIC wave dispersion. Although hot plasma effects significantly increase the minimum resonant energy,Emin, for the most intense EMIC waves, such effects become negligible for the higher frequency part of the hydrogen‐band EMIC wave spectrum. Nonlinear phase trapping of 300–500 keV electrons through resonances with whistler waves may accelerate and make them resonant with EMIC waves that, in turn, quickly scatter those electrons into the loss‐cone. Our results highlight the importance of nonlinear effects for simulations of energetic electron fluxes in the inner magnetosphere. 
    more » « less