Changes in locomotion mediated by odors (odor-guided locomotion) are an important mechanism by which animals discover resources important to their survival. Odor-guided locomotion, like most other behaviors, is highly variable. Variability in behavior can arise at many nodes along the circuit that performs sensorimotor transformation. We review these sources of variability in the context of the Drosophila olfactory system. While these sources of variability are important, using a model for locomotion, we show that another important contributor to behavioral variability is the stochastic nature of decision-making during locomotion as well as the persistence of these decisions: Flies choose the speed and curvature stochastically from a distribution and locomote with the same speed and curvature for extended periods. This stochasticity in locomotion will result in variability in behavior even if there is no noise in sensorimotor transformation. Overall, the noise in sensorimotor transformation is amplified by mechanisms of locomotion making odor-guided locomotion in flies highly variable.
more »
« less
This content will become publicly available on April 22, 2026
Inhibitory control explains locomotor statistics in walking Drosophila
In order to forage for food, many animals regulate not only specific limb movements but the statistics of locomotor behavior, switching between long-range dispersal and local search depending on resource availability. How premotor circuits regulate locomotor statistics is not clear. Here, we analyze and model locomotor statistics and their modulation by attractive food odor in walkingDrosophila. Food odor evokes three motor regimes in flies: baseline walking, upwind running during odor, and search behavior following odor loss. During search, we find that flies adopt higher angular velocities and slower ground speeds and turn for longer periods in the same direction. We further find that flies adopt periods of different mean ground speed and that these state changes influence the length of odor-evoked runs. We next developed a simple model of neural locomotor control that suggests that contralateral inhibition plays a key role in regulating the statistical features of locomotion. As the fly connectome predicts decussating inhibitory neurons in the premotor lateral accessory lobe (LAL), we gained genetic access to a subset of these neurons and tested their effects on behavior. We identified one population whose activation induces all three signature of local search and that regulates angular velocity at odor offset. We identified a second population, including a single LAL neuron pair, that bidirectionally regulates ground speed. Together, our work develops a biologically plausible computational architecture that captures the statistical features of fly locomotion across behavioral states and identifies neural substrates of these computations.
more »
« less
- Award ID(s):
- 2014217
- PAR ID:
- 10592068
- Publisher / Repository:
- National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 122
- Issue:
- 16
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synopsis Locomotion is a hallmark of organisms which has enabled adaptive radiation to an extraordinarily diverse class of ecological niches, and allows animals to move across vast distances. Sampling from multiple sensory modalities enables animals to acquire rich information to guide locomotion. Locomotion without sensory feedback is haphazard; therefore, sensory and motor systems have evolved complex interactions to generate adaptive behavior. Notably, sensory-guided locomotion acts over broad spatial and temporal scales to permit goal-seeking behavior, whether to localize food by tracking an attractive odor plume or to search for a potential mate. How does the brain integrate multimodal stimuli over different temporal and spatial scales to effectively control behavior? In this review, we classify locomotion into three ordinally ranked hierarchical layers that act over distinct spatiotemporal scales: stabilization, motor primitives, and higher-order tasks, respectively. We discuss how these layers present unique challenges and opportunities for sensorimotor integration. We focus on recent advances in invertebrate locomotion due to their accessible neural and mechanical signals from the whole brain, limbs, and sensors. Throughout, we emphasize neural-level description of computations for multimodal integration in genetic model systems, including the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti. We identify that summation (e.g., gating) and weighting—which are inherent computations of spiking neurons—underlie multimodal integration across spatial and temporal scales, therefore suggesting collective strategies to guide locomotion.more » « less
-
Abstract Most real-world behaviors – such as odor-guided locomotion - are performed with incomplete information. Activity in olfactory receptor neuron (ORN) classes provides information about odor identity but not the location of its source. In this study, we investigate the sensorimotor transformation that relates ORN activation to locomotion changes inDrosophilaby optogenetically activating different combinations of ORN classes and measuring the resulting changes in locomotion. Three features describe this sensorimotor transformation: First, locomotion depends on both the instantaneous firing frequency (f) and its change (df); the two together serve as a short-term memory that allows the fly to adapt its motor program to sensory context automatically. Second, the mapping between (f, df) and locomotor parameters such as speed or curvature is distinct for each pattern of activated ORNs. Finally, the sensorimotor mapping changes with time after odor exposure, allowing information integration over a longer timescale.more » « less
-
null (Ed.)When walking along a city street, you might encounter a range of scents and odors, from the smells of coffee and food to those of exhaust fumes and garbage. The odors are swept to your nose by air currents that move scents in two different ways. They carry them downwind in a process called advection, but they also mix them chaotically with clean air in a process called turbulence. What results is an odor plume: a complex ever-changing structure resembling the smoke rising from a chimney. Within a plume, areas of highly concentrated odor particles break up into smaller parcels as they travel further from the odor source. This means that the concentration of the odor does not vary along a smooth gradient. Instead, the odor arrives in brief and unpredictable bursts. Despite this complexity, insects are able to use odor plumes with remarkable ease to navigate towards food sources. But how do they do this? Answering this question has proved challenging because odor plumes are usually invisible. Over the years, scientists have come up with a number of creative solutions to this problem, including releasing soap bubbles together with odors, or using wind tunnels to generate simpler, straight plumes in known locations. These approaches have shown that when insects encounter an odor, they surge upwind towards its source. When they lose track of the odor, they cast themselves crosswind in an effort to regain contact. But this does not explain how insects are able to navigate irregular odor plumes, in which both the timing and location of the odor bursts are unpredictable. Demir, Kadakia et al. have now bridged this gap by showing how fruit flies are attracted to smoke, an odorant that is also visible. By injecting irregular smoke plumes into a custom-built wind tunnel, and then imaging flies as they walked through it, Demir, Kadakia et al. showed that flies make random halts when navigating the plume. Each time they stop, they use the timing of the odor bursts reaching them to decide when to start moving again. Rather than turning every time they detect an odor, flies initiate turns at random times. When several odor bursts arrive in a short time, the flies tend to orient these turns upwind rather than downwind. Flies therefore rely on a different strategy to navigate irregular odor plumes than the ‘surge and cast’ method they use for regular odor streams. Successful navigation through complex irregular plumes involves a degree of random behavior. This helps the flies gather information about an unpredictable environment as they search for the source of the odor. These findings may help to understand how other insects use odor to navigate in the real world, for example, how mosquitoes track down human hosts.more » « less
-
Many behaviors that we perform everyday, including something as familiar as making a peanut-butter sandwich, consist of a sequence of recognizable acts. These acts may include, for example, holding a knife and opening a jar. Yet often neither the sequence nor the individual acts are always performed in the exact same way. For example, there are many ways to hold a knife and there are many ways to open a jar, meaning neither of these actions could be called “stereotyped”. A lack of stereotypy makes it difficult for a computer to automatically recognize the individual acts in a sequence. This same problem would apply to other common behaviors, such as walking around somewhere you have not visited before. While we easily recognize it when we see it, walking is not a stereotyped behavior. It consists of a series of movements that differ between individuals, and even in the same individual at different times. So how can someone automatically recognize the individual acts in a non-stereotyped behavior like walking? To begin to find out, Tao et al. developed a mathematical model that can recognize the walking behavior of a fruit fly. Existing recordings of fruit flies walking were analyzed using a type of mathematical model called a Hierarchical Hidden Markov Model (often shortened to HHMM). Such models assume that there are hidden states that influence the behaviors we can see. For example, someone’s chances of going skiing (an observable behavior) depend on whether or not it is winter (a hidden state). The HHMM revealed that the seemingly random wanderings of a fly consist of ten types of movement. These include the “meander”, the “stop-and-walk”, as well as right turns and left turns. Exposing the flies to a pleasant odor – in this case, apple cider vinegar – altered how the flies walked by changing the time they spent performing each of the different types of movement. All flies in the dataset used the same ten movements, but in different proportions. This means that each fly showed an individual pattern of movement. In fact, the differences between flies are so great that Tao et al. argue that there is no such thing as an average walk for a fruit fly. The model represents a complete description of how fruit flies walk. It thus provides clues to the processes that transform an animal’s sensory experiences into behavior. But it also has potential clinical applications. Similar models for human behaviors could help reveal behaviors that are abnormal because of disease. Normal behaviors also show variability, and some diseases increase or decrease this variability. By making it easier to detect these changes, mathematical models could support earlier diagnosis of medical conditions.more » « less
An official website of the United States government
