Large language models (LLMs) are increasingly adopted for a variety of tasks with implicit graphical structures, such as planning in robotics, multi-hop question answering or knowledge probing, structured commonsense reasoning, and more. While LLMs have advanced the state-of-the-art on these tasks with structure implications, whether LLMs could explicitly process textual descriptions of graphs and structures, map them to grounded conceptual spaces, and perform structured operations remains underexplored. To this end, we propose NLGraph (Natural Language Graph), a comprehensive benchmark of graph-based problem solving designed in natural language. NLGraph contains 29,370 problems, covering eight graph reasoning tasks with varying complexity from simple tasks such as connectivity and shortest path up to complex problems such as maximum flow and simulating graph neural networks. We evaluate LLMs (GPT-3/4) with various prompting approaches on the NLGraph benchmark and find that 1) language models do demonstrate preliminary graph reasoning abilities, 2) the benefit of advanced prompting and in-context learning diminishes on more complex graph problems, while 3) LLMs are also (un)surprisingly brittle in the face of spurious correlations in graph and problem settings. We then propose Build-a-Graph Prompting and Algorithmic Prompting, two instruction-based approaches to enhance LLMs in solving natural language graph problems. Build-a-Graph and Algorithmic prompting improve the performance of LLMs on NLGraph by 3.07% to 16.85% across multiple tasks and settings, while how to solve the most complicated graph reasoning tasks in our setup with language models remains an open research question.
more »
« less
This content will become publicly available on February 26, 2026
SensorBench: Benchmarking LLMs in Coding-Based Sensor Processing
Effective processing, interpretation, and management of sensor data have emerged as a critical component of cyber-physical systems. Traditionally, processing sensor data requires profound theoretical knowledge and proficiency in signal-processing tools. However, recent works show that Large Language Models (LLMs) have promising capabilities in processing sensory data, suggesting their potential as copilots for developing sensing systems. To explore this potential, we construct a comprehensive benchmark, SensorBench, to establish a quantifiable objective. The benchmark incorporates diverse real-world sensor datasets for various tasks. The results show that while LLMs exhibit considerable proficiency in simpler tasks, they face inherent challenges in processing compositional tasks with parameter selections compared to engineering experts. Additionally, we investigate four prompting strategies for sensor processing and show that self-verification can outperform all other baselines in 48% of tasks. Our study provides a comprehensive benchmark and prompting analysis for future developments, paving the way toward an LLM-based sensor processing copilot.
more »
« less
- Award ID(s):
- 2325956
- PAR ID:
- 10592180
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400714030
- Page Range / eLocation ID:
- 25 to 30
- Format(s):
- Medium: X
- Location:
- La Quinta CA USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)One of the areas where Large Language Models (LLMs) show promise is for automated qualitative coding, typically framed as a text classification task in natural language processing (NLP). Their demonstrated ability to leverage in-context learning to operate well even in data-scarce settings poses the question of whether collecting and annotating large-scale data for training qualitative coding models is still beneficial. In this paper, we empirically investigate the performance of LLMs designed for use in prompting-based in-context learning settings, and draw a comparison to models that have been trained using the traditional pretraining--finetuning paradigm with task-specific annotated data, specifically for tasks involving qualitative coding of classroom dialog. Compared to other domains where NLP studies are typically situated, classroom dialog is much more natural and therefore messier. Moreover, tasks in this domain are nuanced and theoretically grounded and require a deep understanding of the conversational context. We provide a comprehensive evaluation across five datasets, including tasks such as talkmove prediction and collaborative problem solving skill identification. Our findings show that task-specific finetuning strongly outperforms in-context learning, showing the continuing need for high-quality annotated training datasets.more » « less
-
Advances in large language models (LLMs) have empowered a variety of applications. However, there is still a significant gap in research when it comes to understanding and enhancing the capabilities of LLMs in the field of mental health. In this work, we present a comprehensive evaluation of multiple LLMs on various mental health prediction tasks via online text data, including Alpaca, Alpaca-LoRA, FLAN-T5, GPT-3.5, and GPT-4. We conduct a broad range of experiments, covering zero-shot prompting, few-shot prompting, and instruction fine-tuning. The results indicate a promising yet limited performance of LLMs with zero-shot and few-shot prompt designs for mental health tasks. More importantly, our experiments show that instruction finetuning can significantly boost the performance of LLMs for all tasks simultaneously. Our best-finetuned models, Mental-Alpaca and Mental-FLAN-T5, outperform the best prompt design of GPT-3.5 (25 and 15 times bigger) by 10.9% on balanced accuracy and the best of GPT-4 (250 and 150 times bigger) by 4.8%. They further perform on par with the state-of-the-art task-specific language model. We also conduct an exploratory case study on LLMs' capability on mental health reasoning tasks, illustrating the promising capability of certain models such as GPT-4. We summarize our findings into a set of action guidelines for potential methods to enhance LLMs' capability for mental health tasks. Meanwhile, we also emphasize the important limitations before achieving deployability in real-world mental health settings, such as known racial and gender bias. We highlight the important ethical risks accompanying this line of research.more » « less
-
Large language models (LLMs) have achieved remarkable success in natural language processing (NLP), demonstrating significant capabilities in processing and understanding text data. However, recent studies have identified limitations in LLMs’ ability to manipulate, program, and reason about structured data, especially graphs. We introduce GraphEval36K1 , the first comprehensive graph dataset, comprising 40 graph coding problems and 36,900 test cases to evaluate the ability of LLMs on graph problem solving. Our dataset is categorized into eight primary and four sub-categories to ensure a thorough evaluation across different types of graphs. We benchmark ten LLMs, finding that private models outperform open-source ones, though the gap is narrowing. We also analyze the performance of LLMs across directed vs undirected graphs, different kinds of graph concepts, and network models. Furthermore, to improve the usability of our evaluation framework, we propose Structured Symbolic Decomposition (SSD), an instruction-based method designed to enhance LLM performance on complex graph tasks. Results show that SSD improves the average passing rate of GPT-4, GPT4o, Gemini-Pro and Claude-3-Sonnet by 8.38%, 6.78%, 29.28% and 25.28%, respectively.more » « less
-
Large Language Models (LLMs) with strong abilities in natural language processing tasks have emerged and have been applied in various kinds of areas such as science, finance and software engineering. However, the capability of LLMs to advance the field of chemistry remains unclear. In this paper, rather than pursuing state-of-the-art performance, we aim to evaluate capabilities of LLMs in a wide range of tasks across the chemistry domain. We identify three key chemistryrelated capabilities including understanding, reasoning and explaining to explore in LLMs and establish a benchmark containing eight chemistry tasks. Our analysis draws on widely recognized datasets facilitating a broad exploration of the capacities of LLMs within the context of practical chemistry. Five LLMs (GPT-4, GPT-3.5, Davinci-003, Llama and Galactica) are evaluated for each chemistry task in zero-shot and few-shot in-context learning settings with carefully selected demonstration examples and specially crafted prompts. Our investigation found that GPT-4 outperformed other models and LLMs exhibit different competitive levels in eight chemistry tasks. In addition to the key findings from the comprehensive benchmark analysis, our work provides insights into the limitation of current LLMs and the impact of in-context learning settings on LLMs’ performance across various chemistry tasks. The code and datasets used in this study are available at https://github.com/ChemFoundationModels/ChemLLMBench.more » « less
An official website of the United States government
