skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 17, 2026

Title: C 60 -based ionic salt electron shuttle for high-performance inverted perovskite solar modules
Although C60is usually the electron transport layer (ETL) in inverted perovskite solar cells, its molecular nature of C60leads to weak interfaces that lead to non-ideal interfacial electronic and mechanical degradation. Here, we synthesized an ionic salt from C60, 4-(1',5′-dihydro-1'-methyl-2'H-[5,6] fullereno-C60-Ih-[1,9-c]pyrrol-2'-yl) phenylmethanaminium chloride (CPMAC), and used it as the electron shuttle in inverted PSCs. The CH2-NH3+head group in the CPMA cation improved the ETL interface and the ionic nature enhanced the packing, leading to ~3-fold increase in the interfacial toughness compared to C60. Using CPMAC, we obtained ~26% power conversion efficiencies (PCEs) with ~2% degradation after 2,100 hours of 1-sun operation at 65°C. For minimodules (four subcells, 6 centimeters square), we achieved the PCE of ~23% with <9% degradation after 2,200 hours of operation at 55°C.  more » « less
Award ID(s):
2339233
PAR ID:
10592220
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Publisher / Repository:
Science
Date Published:
Journal Name:
Science
ISSN:
0036-8075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The combined effects of compact TiO2(c‐TiO2) electron‐transport layer (ETL) are investigated without and with mesoscopic TiO2(m‐TiO2) on top, and without and with an iodine‐terminated silane self‐assembled monolayer (SAM), on the mechanical behavior, opto–electronic properties, photovoltaic (PV) performance, and operational‐stability of solar cells based on metal‐halide perovskites (MHPs). The interfacial toughness increases almost threefold in going from c‐TiO2without SAM to m‐TiO2with SAM. This is attributed to the synergistic effect of the m‐TiO2/MHP nanocomposite at the interface and the enhanced adhesion afforded by the iodine‐terminated silane SAM. The combination of m‐TiO2and SAM also offers a significant beneficial effect on the photocarriers extraction at the ETL/MHP interface, resulting in perovskite solar cells (PSCs) with power‐conversion efficiency (PCE) of over 24% and 20% for 0.1 and 1 cm2active areas, respectively. These PSCs also have exceptionally long operational‐stability lives: extrapolatedT80 (duration at 80% initial PCE retained) is ≈18 000 and 10 000 h for 0.1 and 1 cm2active areas, respectively.Postmortemcharacterization and analyses of the operational‐stability‐tested PSCs are performed to elucidate the possible mechanisms responsible for the long operational‐stability. 
    more » « less
  2. Abstract In a high‐resolution photoelectron imaging and theoretical study of the IrB3cluster, two isomers were observed experimentally with electron affinities (EAs) of 1.3147(8) and 1.937(4) eV. Quantum calculations revealed two nearly degenerate isomers competing for the global minimum, both with a B3ring coordinated with the Ir atom. The isomer with the higher EA consists of a B3ring with a bridge‐bonded Ir atom (Cs,2A′), and the second isomer features a tetrahedral structure (C3v,2A1). The neutral tetrahedral structure was predicted to be considerably more stable than all other isomers. Chemical bonding analysis showed that the neutralC3visomer involves significant covalent Ir−B bonding and weak ionic bonding with charge transfer from B3to Ir, and can be viewed as an Ir–(η3‐B3+) complex. This study provides the first example of a boron‐to‐metal charge‐transfer complex and evidence of a π‐aromatic B3+ring coordinated to a transition metal. 
    more » « less
  3. Abstract Si‐based anodes with a stiff diamond structure usually suffer from sluggish lithiation/delithiation reaction due to low Li‐ion and electronic conductivity. Here, a novel ternary compound ZnSi2P3with a cation‐disordered sphalerite structure, prepared by a facile mechanochemical method, is reported, demonstrating faster Li‐ion and electron transport and greater tolerance to volume change during cycling than the existing Si‐based anodes. A composite electrode consisting of ZnSi2P3and carbon achieves a high initial Coulombic efficiency (92%) and excellent rate capability (950 mAh g−1at 10 A g−1) while maintaining superior cycling stability (1955 mAh g−1after 500 cycles at 300 mA g−1), surpassing the performance of most Si‐ and P‐based anodes ever reported. The remarkable electrochemical performance is attributed to the sphalerite structure that allows fast ion and electron transport and the reversible Li‐storage mechanism involving intercalation and conversion reactions. Moreover, the cation‐disordered sphalerite structure is flexible to ionic substitutions, allowing extension to a family of Zn(Cu)Si2+xP3solid solution anodes (x= 0, 2, 5, 10) with large capacity, high initial Coulombic efficiency, and tunable working potentials, representing attractive anode candidates for next‐generation, high‐performance, and low‐cost Li‐ion batteries. 
    more » « less
  4. Abstract Abundant transition metal borides are emerging as substitute electrochemical hydrogen evolution reaction (HER) catalysts for noble metals. Herein, an unusual canonic‐like behavior of theclattice parameter in the AlB2‐type solid solution Cr1–xMoxB2(x= 0, 0.25, 0.4, 0.5, 0.6, 0.75, 1) and its direct correlation to the HER activity in 0.5 M H2SO4solution are reported. The activity increases with increasingx, reaching its maximum atx= 0.6 before decreasing again. At high current densities, Cr0.4Mo0.6B2outperforms Pt/C, as it needs 180 mV less overpotential to drive an 800 mA cm−2current density. Cr0.4Mo0.6B2has excellent long‐term stability and durability showing no significant activity loss after 5000 cycles and 25 h of operation in acid. First‐principles calculations have correctly reproduced the nonlinear dependence of theclattice parameter and have shown that the mixed metal/B layers, such as (110), promote hydrogen evolution more efficiently forx= 0.6, supporting the experimental results. 
    more » « less
  5. Abstract Bis‐porphyrin nanocages (M2BiCage, M = FeCl, Co, Zn) and their host‐guest complexes with C60and C70were used to examine how molecular porosity and interactions with carbon nanomaterials affect the CO2reduction activity of metalloporphyrin electrocatalysts. The cages were found to adsorb on carbon black to provide electrocatalytic inks with excellent accessibilities of the metal sites (≈50%) even at high metal loadings (2500 nmol cm−2), enabling good activity for reducing CO2to CO. A complex of C70bound inside(FeCl)2BiCageachieves high current densities for CO formation at low overpotentials (|jCO| >7 mA cm−2,η= 320 mV; >13.5 mA cm−2,η= 520 mV) with ≥95% Faradaic efficiency (FECO), andCo2BiCageachieves high turnover frequencies (≈1300 h−1,η= 520 mV) with 90% FECO. In general, blocking the pore with C60or C70improves the catalytic performance of(FeCl)2BiCageand has only small effects onCo2BiCage, indicating that the good catalytic properties of the cages cannot be attributed to their internal pores. Neither enhanced electron transfer rates nor metal‐fullerene interactions appear to underlie the ability of C60/C70to improve the performance of(FeCl)2BiCage, in contrast to effects often proposed for other carbon nanosupports. 
    more » « less