skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 5, 2026

Title: The V-band Variability of NGC 4151
Abstract We presentV-band continuum light curves of the active galactic nucleus (AGN) in NGC 4151 created from a new photometric monitoring campaign with the Las Cumbres Observatory network. A total of 336 images were collected from 2023 December to 2024 June, with an average cadence of ∼2 images per day. Using aperture photometry and image subtraction, we constructed continuum light curves. Though both techniques generated similar light curves and demonstrated AGN variability on the scale of ΔV ≈ 0.4 mag, the galactic starlight contribution to the aperture photometry light curve produced a flux offset of ∼19% within a circular aperture of radius 31. The final light curves from this work will be compared against the variability of the broad emission lines to constrain the mass of the supermassive black hole and to model the broad-line region kinematics and geometry in NGC 4151.  more » « less
Award ID(s):
2407802
PAR ID:
10592356
Author(s) / Creator(s):
; ;
Publisher / Repository:
Research Notes of the American Astronomical Society
Date Published:
Journal Name:
Research Notes of the AAS
Volume:
9
Issue:
3
ISSN:
2515-5172
Page Range / eLocation ID:
48
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In order to constrain the size of the optical continuum emission region in the dwarf Seyfert 1 galaxy NGC 4395 through reverberation mapping, we carried out high-cadence photometric monitoring in thegrizfilter bands on two consecutive nights in 2022 April using the four-channel MuSCAT3 camera on the Faulkes Telescope North at Haleakalā Observatory. Correlated variability across thegrizbands is clearly detected, and ther-,i-, andz-band light curves show lags of 7.72 1.09 + 1.01 , 14.16 1.25 + 1.22 , and 20.78 2.09 + 1.99 minutes with respect to thegband when measured using the full-duration light curves. When lags are measured for each night separately, the Night 2 data exhibit lower cross-correlation amplitudes and shorter lags than the Night 1 light curves. Using the full-duration lags, we find that the lag–wavelength relationship is consistent with theτ∝λ4/3dependence found for more luminous active galactic nuclei. Combining our results with continuum lags measured for other objects, the lag betweengandzband scales with optical continuum luminosity asτgz∝L0.56±0.05, similar to the scaling of broad-line region size with luminosity, reinforcing recent evidence that diffuse continuum emission from the broad-line region may contribute substantially to optical continuum variability and reverberation lags. 
    more » « less
  2. Abstract We present the results of a new reverberation mapping campaign for the broad-line active galactic nucleus (AGN) in the edge-on spiral IC 4329A. Monitoring of the optical continuum withV-band photometry and broad emission-line flux variability with moderate-resolution spectroscopy allowed emission-line light curves to be measured for Hβ, Hγ, and Heiiλ4686. We find a time delay of 16.3 2.3 + 2.6 days for Hβ, a similar time delay of 16.0 2.6 + 4.8 days for Hγ, and an unresolved time delay of 0.6 3.9 + 3.9 days for Heii. The time delay for Hβis consistent with the predicted value from the relationship between AGN luminosity and broad-line region radius, after correction for the ∼2.4 mag of intrinsic extinction at 5100 Å. Combining the measured time delay for Hβwith the broad emission-line width and an adopted value of 〈f〉 = 4.8, we find a central supermassive black hole mass of M BH = 6.8 1.1 + 1.2 × 10 7 M. Velocity-resolved time delays were measured across the broad Hβemission-line profile and may be consistent with an “M”-like shape. Modeling of the full reverberation response of Hβwas able to provide only modest constraints on some parameters, but does exhibit agreement with the black hole mass and average time delay. The models also suggest that the AGN structure is misaligned by a large amount from the edge-on galaxy disk. This is consistent with expectations from the unified model of AGNs, in which broad emission lines are expected to be visible only for AGNs that are viewed at relatively face-on inclinations. 
    more » « less
  3. Abstract Active galactic nuclei (AGN) are promising candidate sources of high-energy astrophysical neutrinos, since they provide environments rich in matter and photon targets where cosmic-ray interactions may lead to the production of gamma rays and neutrinos. We searched for high-energy neutrino emission from AGN using the Swift-BAT Spectroscopic Survey catalog of hard X-ray sources and 12 yr of IceCube muon track data. First, upon performing a stacked search, no significant emission was found. Second, we searched for neutrinos from a list of 43 candidate sources and found an excess from the direction of two sources, the Seyfert galaxies NGC 1068 and NGC 4151. We observed NGC 1068 at flux ϕ ν μ + ν ¯ μ = 4.0 2 1.52 + 1.58 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV, with a power-law spectral indexγ= 3.10 0.22 + 0.26 , consistent with previous IceCube results. The observation of a neutrino excess from the direction of NGC 4151 is at a posttrial significance of 2.9σ. If interpreted as an astrophysical signal, the excess observed from NGC 4151 corresponds to a flux ϕ ν μ + ν ¯ μ = 1.5 1 0.81 + 0.99 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV andγ= 2.83 0.28 + 0.35
    more » « less
  4. Abstract We describe photometric monitoring of the Seyfert 1 galaxy MCG–06-30-15 with the Las Cumbres Observatory network. Using theVfilter, 496 images were collected between 2023 December and 2024 June from observatories in Chile, South Africa, and Australia. We created light curves of the active galactic nucleus continuum emission using aperture photometry and image subtraction methods. We find that the typical magnitude difference between the two light curves is ΔV ≈ 1.9 mag, indicating that the host galaxy contributes approximately 85% of the total flux through the photometric aperture. The amplitude of variation is significantly enhanced when the host galaxy is removed: ΔV = 0.1 mag from aperture photometry compared to ΔV = 0.5 mag with image subtraction. Future work will compare the continuum light curve with the broad emission-line flux variations to provide insight into the physical parameters of the broad-line region in MCG–06-30-15 and the mass of the central supermassive black hole. 
    more » « less
  5. Abstract We present a reanalysis of reverberation mapping data from 2005 for the Seyfert galaxy NGC 4151, supplemented with additional data from the literature to constrain the continuum variations over a significantly longer baseline than the original monitoring program. Modeling of the continuum light curve and the velocity-resolved variations across the Hβemission line constrains the geometry and kinematics of the broad line region (BLR). The BLR is well described by a very thick disk with similar opening angle (θo≈ 57°) and inclination angle (θi≈ 58°), suggesting that our sight line toward the innermost central engine skims just above the surface of the BLR. The inclination is consistent with constraints from geometric modeling of the narrow-line region, and the similarity between the inclination and opening angles is intriguing given previous studies of NGC 4151 that suggest BLR gas has been observed temporarily eclipsing the X-ray source. The BLR kinematics are dominated by eccentric bound orbits, with ∼10% of the orbits preferring near-circular motions. With the BLR geometry and kinematics constrained, the models provide an independent and direct black hole mass measurement of log M BH / M = 7.22 0.10 + 0.11 or M BH = 1.66 0.34 + 0.48 × 10 7 M, which is in good agreement with mass measurements from stellar dynamical modeling and gas dynamical modeling. NGC 4151 is one of the few nearby broad-lined Seyferts where the black hole mass may be measured via multiple independent techniques, and it provides an important test case for investigating potential systematics that could affect the black hole mass scales used in the local universe and for high-redshift quasars. 
    more » « less