skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Broad Line Region and Black Hole Mass of NGC 4151
Abstract We present a reanalysis of reverberation mapping data from 2005 for the Seyfert galaxy NGC 4151, supplemented with additional data from the literature to constrain the continuum variations over a significantly longer baseline than the original monitoring program. Modeling of the continuum light curve and the velocity-resolved variations across the Hβemission line constrains the geometry and kinematics of the broad line region (BLR). The BLR is well described by a very thick disk with similar opening angle (θo≈ 57°) and inclination angle (θi≈ 58°), suggesting that our sight line toward the innermost central engine skims just above the surface of the BLR. The inclination is consistent with constraints from geometric modeling of the narrow-line region, and the similarity between the inclination and opening angles is intriguing given previous studies of NGC 4151 that suggest BLR gas has been observed temporarily eclipsing the X-ray source. The BLR kinematics are dominated by eccentric bound orbits, with ∼10% of the orbits preferring near-circular motions. With the BLR geometry and kinematics constrained, the models provide an independent and direct black hole mass measurement of log M BH / M = 7.22 0.10 + 0.11 or M BH = 1.66 0.34 + 0.48 × 10 7 M, which is in good agreement with mass measurements from stellar dynamical modeling and gas dynamical modeling. NGC 4151 is one of the few nearby broad-lined Seyferts where the black hole mass may be measured via multiple independent techniques, and it provides an important test case for investigating potential systematics that could affect the black hole mass scales used in the local universe and for high-redshift quasars.  more » « less
Award ID(s):
2009230 1907208
PAR ID:
10486141
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
934
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 168
Size(s):
Article No. 168
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We describe the results of a new reverberation mapping program focused on the nearby Seyfert galaxy NGC 3227. Photometric and spectroscopic monitoring was carried out from 2022 December to 2023 June with the Las Cumbres Observatory network of telescopes. We detected time delays in several optical broad emission lines, with Hβhaving the longest delay at τ cent = 4.0 0.9 + 0.9 days and Heiihaving the shortest delay with τ cent = 0.9 0.8 + 1.1 days. We also detect velocity-resolved behavior of the Hβemission line, with different line-of-sight velocities corresponding to different observed time delays. Combining the integrated Hβtime delay with the width of the variable component of the emission line and a standard scale factor suggests a black hole mass of M BH = 1.1 0.3 + 0.2 × 10 7 M. Modeling of the full velocity-resolved response of the Hβemission line with the phenomenological codeCARAMELfinds a similar mass of M BH = 1.2 0.7 + 1.5 × 10 7 Mand suggests that the Hβ-emitting broad-line region (BLR) may be represented by a biconical or flared disk structure that we are viewing at an inclination angle ofθi≈ 33° and with gas motions that are dominated by rotation. The new photoionization-based BLR modeling toolBELMACfinds general agreement with the observations when assuming the best-fitCARAMELresults; however,BELMACprefers a thick-disk geometry and kinematics that are equally composed of rotation and inflow. Both codes infer a radially extended and flattened BLR that is not outflowing. 
    more » « less
  2. Abstract We present a stellar dynamical mass measurement of a newly detected supermassive black hole (SMBH) at the center of the fast-rotating, massive elliptical galaxy NGC 2693 as part of the MASSIVE survey. We combine high signal-to-noise ratio integral field spectroscopy (IFS) from the Gemini Multi-Object Spectrograph with wide-field data from the Mitchell Spectrograph at McDonald Observatory to extract and model stellar kinematics of NGC 2693 from the central ∼150 pc out to ∼2.5 effective radii. Observations from Hubble Space Telescope WFC3 are used to determine the stellar light distribution. We perform fully triaxial Schwarzschild orbit modeling using the latest TriOS code and a Bayesian search in 6D galaxy model parameter space to determine NGC 2693's SMBH mass (MBH), stellar mass-to-light ratio, dark matter content, and intrinsic shape. We find M BH = 1.7 ± 0.4 × 10 9 M and a triaxial intrinsic shape with axis ratiosp=b/a= 0.902 ± 0.009 and q = c / a = 0.721 0.010 + 0.011 , triaxiality parameterT= 0.39 ± 0.04. In comparison, the best-fit orbit model in the axisymmetric limit and (cylindrical) Jeans anisotropic model of NGC 2693 prefer M BH = 2.4 ± 0.6 × 10 9 M and M BH = 2.9 ± 0.3 × 10 9 M , respectively. Neither model can account for the non-axisymmetric stellar velocity features present in the IFS data. 
    more » « less
  3. Abstract We measure the correlation between black hole massMBHand host stellar massM*for a sample of 38 broad-line quasars at 0.2 ≲z≲ 0.8 (median redshiftzmed= 0.5). The black hole masses are derived from a dedicated reverberation mapping program for distant quasars, and the stellar masses are derived from two-band optical+IR Hubble Space Telescope imaging. Most of these quasars are well centered within ≲1 kpc from the host galaxy centroid, with only a few cases in merging/disturbed systems showing larger spatial offsets. Our sample spans two orders of magnitude in stellar mass (∼109–1011M) and black hole mass (∼107–109M) and reveals a significant correlation between the two quantities. We find a best-fit intrinsic (i.e., selection effects corrected)MBH–M*,hostrelation of log ( M BH / M ) = 7.01 0.33 + 0.23 + 1.74 0.64 + 0.64 log ( M * , host / 10 10 M ) , with an intrinsic scatter of 0.47 0.17 + 0.24 dex. Decomposing our quasar hosts into bulges and disks, there is a similarMBH–M*,bulgerelation with slightly larger scatter, likely caused by systematic uncertainties in the bulge–disk decomposition. TheMBH–M*,hostrelation atzmed= 0.5 is similar to that in local quiescent galaxies, with negligible evolution over the redshift range probed by our sample. With direct black hole masses from reverberation mapping and the large dynamical range of the sample, selection biases do not appear to affect our conclusions significantly. Our results, along with other samples in the literature, suggest that the locally measured black hole mass–host stellar mass relation is already in place atz∼ 1. 
    more » « less
  4. Abstract We analyze variability in 15-season optical lightcurves from the doubly imaged lensed quasar SDSS J165043.44+425149.3 (SDSS1650), comprising five seasons of monitoring data from the Maidanak Observatory (277 nights in total, including the two seasons of data previously presented in Vuissoz et al.), five seasons of overlapping data from the Mercator telescope (269 nights), and 12 seasons of monitoring data from the US Naval Observatory, Flagstaff Station at lower cadence (80 nights). We update the 2007 time-delay measurement for SDSS1650 with these new data, finding a time delay of Δ t AB = 55.1 3.7 + 4.0 days, with image A leading image B. We analyze the microlensing variability in these lightcurves using a Bayesian Monte Carlo technique to yield measurements of the size of the accretion disk atλrest= 2420 Å, finding a half-light radius of log(r1/2/cm) = 16.19 0.58 + 0.38 assuming a 60° inclination angle. This result is unchanged if we model 30% flux contamination from the broad-line region. We use the width of the Mgiiline in the existing Sloan Digital Sky Survey spectra to estimate the mass of this system’s supermassive black hole, findingMBH= 2.47 × 109M. We confirm that the accretion disk size in this system, whose black hole mass is on the very high end of theMBHscale, is fully consistent with the existing quasar accretion disk size–black hole mass relation. 
    more » « less
  5. Abstract We combine our dynamical modeling black-hole mass measurements from the Lick AGN Monitoring Project 2016 sample with measured cross-correlation time lags and line widths to recover individual scale factors,f, used in traditional reverberation-mapping analyses. We extend our sample by including prior results from Code for AGN Reverberation and Modeling of Emission Lines (caramel) studies that have utilized our methods. Aiming to improve the precision of black-hole mass estimates, as well as uncover any regularities in the behavior of the broad-line region (BLR), we search for correlations betweenfand other AGN/BLR parameters. We find (i) evidence for a correlation between the virial coefficient log 10 ( f mean , σ ) and black-hole mass, (ii) marginal evidence for a similar correlation between log 10 ( f rms , σ ) and black-hole mass, (iii) marginal evidence for an anticorrelation of BLR disk thickness with log 10 ( f mean , FWHM ) and log 10 ( f rms , FWHM ) , and (iv) marginal evidence for an anticorrelation of inclination angle with log 10 ( f mean , FWHM ) , log 10 ( f rms , σ ) , and log 10 ( f mean , σ ) . Last, we find marginal evidence for a correlation between line-profile shape, when using the root-mean-square spectrum, log 10 ( FWHM / σ ) rms , and the virial coefficient, log 10 ( f rms , σ ) , and investigate how BLR properties might be related to line-profile shape usingcaramelmodels. 
    more » « less