skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Insights on Arc Magmatic Systems Drawn from Natural Melt Inclusions and Crystallization Experiments at P H2O   = 800 MPa under Oxidizing Conditions
Abstract Whole rock compositions at Buldir Volcano, western Aleutian arc, record a strong, continuous trend of iron depletion with decreasing MgO, classically interpreted as a calc-alkaline liquid line of descent. In contrast, olivine-hosted melt inclusions have higher total iron (FeO*) than whole rocks and show little change in FeO* with decreasing MgO. To investigate this discrepancy and determine the conditions required for strong iron depletion, we conducted oxygen fugacity (ƒO2) buffered, water-saturated crystallization experiments at 800 MPa and ƒO2 = QFM + 1.6 ± 0.4 (1$$\sigma$$) (where QFM refers to the quartz-fayalite-magnetite buffer) on a high-Al, basaltic starting material modeled after a Buldir lava. Experimental conditions were informed by olivine-hosted melt inclusions that record minimum entrapment pressures as high as 570 MPa, >6 wt % H2O, and ƒO2 of QFM + 1.4 (±0.2), making Buldir one of the most oxidized and wettest arc volcanoes documented globally. The experiments produce melts with Si-enrichment and Fe-depletion signatures characteristic of evolved, calc-alkaline magmas at the lowest MgO, although FeO* remains roughly constant over most of the experimental temperature range. Experiments saturate CrAl-spinel and olivine at 1160°C, followed by clinopyroxene and Al-spinel at 1085°C, hornblende at 1060°C, and, finally, plagioclase and magnetite between 1040°C and 960°C. Hornblende crystallization, not magnetite, generates the largest increase in SiO2 and largest decrease in FeO* in coexisting melts. Compositions of melt inclusions are consistent with experimental melts and reflect crystallization of a basaltic parent magma at high PH2O. In contrast, the whole rock compositional trends are influenced by magma mixing and phenocryst redistribution and accumulation. The crystallization experiments and natural liquids (melt inclusions and groundmass glass) from Buldir suggest that for an oxidized, hydrous primary basalt starting composition, significant Fe depletion from the melt will not occur until intermediate to late stages of magma crystallization (< ~4.5 wt % MgO). We conclude that the Buldir whole rock trend cannot be reproduced by crystallization at arc-relevant oxygen fugacities and is not a true liquid line of descent, warranting caution when interpreting volcanic trends globally.  more » « less
Award ID(s):
2022200
PAR ID:
10592375
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Petrology
Volume:
65
Issue:
12
ISSN:
0022-3530
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many lines of evidence from high P–T experiments, thermodynamic models, and natural observations suggest that slab-derived aqueous fluids, which flux mantle wedges contain variable amounts of dissolved carbon. However, constraints on the effects of H2O–CO2 fluids on mantle melting, particularly at mantle wedge P–T conditions, are limited. Here, we present new piston cylinder experiments on fertile and depleted peridotite compositions with 3.5 wt.% H2O and XCO2 [= molar CO2 / (CO2 + H2O)] of 0.04–0.17. Experiments were performed at 2–3 GPa and 1350°C to assess how temperature, peridotite fertility, and XCO2 of slab-derived fluid affects partial melting in mantle wedges. All experiments produce olivine + orthopyroxene +7 to 41 wt.% partial melt. Our new data, along with previous lower temperature data, show that as mantle wedge temperature increases, primary melts become richer in SiO2, FeO*, and MgO and poorer CaO, Al2O3, and alkalis when influenced by H2O–CO2 fluids. At constant P–T and bulk H2O content, the extent of melting in the mantle wedge is largely controlled by peridotite fertility and XCO2 of slab-fluid. High XCO2 depleted compositions generate ~7 wt.% melt, whereas, at identical P–T, low XCO2 fertile compositions generate ~30 to 40 wt.% melt. Additionally, peridotite fertility and XCO2 have significant effects on peridotite partial melt compositions. At a constant P–T–XCO2, fertile peridotites generate melts richer in CaO and Al2O3 and poorer in SiO2, MgO + FeO, and alkalis. Similar to previous experimental studies, at a constant P–T fertility condition, as XCO2 increases, SiO2 and CaO of melts systematically decrease and increase, respectively. Such distinctive effects of oxidized form of dissolved carbon on peridotite partial melt compositions are not observed if the carbon-bearing fluid is reduced, such as CH4-bearing. Considering the large effect of XCO2 on melt SiO2 and CaO concentrations and the relatively oxidized nature of arc magmas, we compare the SiO2/CaO of our experimental melts and melts from previous peridotite + H2O ± CO2 studies to the SiO2/CaO systematics of primitive arc basalts and ultra-calcic, silica-undersaturated arc melt inclusions. From this comparison, we demonstrate that across most P–T–fertility conditions predicted for mantle wedges, partial melts from bulk compositions with XCO2 ≥ 0.11 have lower SiO2/CaO than all primitive arc melts found globally, even when correcting for olivine fractionation, whereas partial melts from bulk compositions with XCO2 = 0.04 overlap the lower end of the SiO2/CaO field defined by natural data. These results suggest that the upper XCO2 limit of slab-fluids influencing primary arc magma formation is 0.04 < XCO2 < 0.11, and this upper limit is likely to apply globally. Lastly, we show that the anomalous SiO2/CaO and CaO/Al2O3 signatures observed in ultra-calcic arc melt inclusions can be reproduced by partial melting of either CO2-bearing hydrous fertile and depleted peridotites with 0 < XCO2 < 0.11 at 2–3 GPa, or from nominally CO2-free hydrous fertile peridotites at P > 3 GPa. 
    more » « less
  2. Abstract We investigated the state of the arc background mantle (i.e. mantle wedge without slab component) by means of olivine CaO and its Cr-spinel inclusions in a series of high-Mg# volcanic rocks from the Quaternary Trans-Mexican Volcanic Belt. Olivine CaO was paired with the Cr# [molar Cr/(Cr + Al) *100] of Cr-spinel inclusions, and 337 olivine+Cr-spinel pairs were obtained from 33 calc-alkaline, high-K and OIB-type arc front volcanic rocks, and three monogenetic rear-arc basalts that lack subduction signatures. Olivine+Cr-spinels display coherent elemental and He–O isotopic systematics that contrast with the compositional diversity of the bulk rocks. All arc front olivines have low CaO (0.135 ± 0.029 wt %) relative to rear-arc olivines which have the higher CaO (0.248 ± 0.028 wt %) of olivines from mid-ocean ridge basalts. Olivine 3He/4He–δ18O isotope systematics confirm that the olivine+Cr-spinels are not, or negligibly, affected by crustal basement contamination, and thus preserve compositional characteristics of primary arc magmas. Variations in melt H2O contents in the arc front series and the decoupling of olivine CaO and Ni are inconsistent with controls on the olivine CaO by melt water and/or secondary mantle pyroxenites. Instead, we propose that low olivine CaO reflects the typical low melt CaO of high-Mg# arc magmas erupting through thick crust. We interpret the inverse correlation of olivine CaO and Cr-spinel Cr# over a broad range of Cr# (~10–70) as co-variations of CaO, Al and Cr of their (near) primary host melts, which derived from a mantle that has been variably depleted by slab-flux driven serial melt extraction. Our results obviate the need for advecting depleted residual mantle from rear- and back-arc region, but do not upset the larger underlying global variations of melt CaO high-Mg# arc magmas worldwide, despite leading to considerable regional variations of melt CaO at the arc front of the Trans-Mexican Volcanic Belt. 
    more » « less
  3. Abstract A collection of quaternary, high-MgO (≤13.4 wt%) basanite and minette cinder and lava cones, with an enhanced arc geochemical signature, are located along the northern margin of the N–S Colima rift in western Mexico. The Colima rift overlies the lithospheric suture between the Jalisco block and Guerrero terrane, as well as the tear between the Rivera and Cocos subducting oceanic plates. From the literature, volatile analyses of olivine-hosted melt inclusions in the Colima cone samples document notably high concentrations of dissolved H2O in the melt (≤ 7.0 wt%) as well as degassing-induced phenocryst growth over a range of depths ≤25 km. In this study, it is shown that the high-MgO character of the Colima suite reflects liquid compositions, consistent with evidence for their rapid transit to the surface, without stalling in a crustal magma chamber. The most Mg-rich olivine analyzed in each sample matches the equilibrium composition at the liquidus based on olivine-melt Mn–Mg and Fe2+–Mg exchange coefficients. Application of both a Mg- and Ni-based olivine-melt thermometer, calibrated on the same experimental data set, to the Colima cone suite provides the temperature and dissolved H2O content at the liquidus. Because the Ni thermometer is insensitive to dissolved H2O in the melt, it gives the actual temperature at the onset of olivine phenocryst growth. For the nine Colima samples that range from 13.4–9.2 wt% MgO, resulting temperatures range from 1221°C to 1056°C (± 6–11°C). In contrast, the Mg thermometer is sensitive to dissolved H2O in the melt, and its application (without a correction of H2O) gives the temperature of olivine crystallization under anhydrous conditions. When the Mg- and Ni-based temperatures are paired, the depression of the liquidus (∆T = TMg–TNi) due to dissolved H2O can be obtained. For the high-MgO (>9 wt%) Colima samples, ∆T values range from 188°C to 109°C. Corrections for the effect of pressure (i.e. evidence that phenocryst growth began at ~700 MPa), increase ∆T by ~21°C. An updated model calibration (on experiments from the literature) that relates ∆T with dissolved H2O in the melt shows that the best fit (R2 = 0.95) is linear, wt% H2O = 0.047*∆T, with a standard error of ±0.5 wt%. Although the experimental data set spans a wide range of melt composition (e.g. 47–58 wt% SiO2, 4.4–10.2 wt% MgO, 1.3–4.9 wt% Na2O, 0.1–5.0 wt% K2O, 0.3–5.3 wt% H2O), no dependence on anhydrous melt composition is resolved. Application of this updated model to the Colima suite gives H2O contents of 5.1–8.8 wt% H2O, consistent with those analyzed in olivine-hosted MIs from the literature. When the thermometry and hygrometry results for the Colima cone suite are compared to those for the adjacent calc–alkaline basalts from the Tancítaro Volcanic Field (TVF) in Michoacán, two distinct linear trends in a plot of wt% H2O vs. temperature are found, indicative of different mantle sources. It is proposed that the high-MgO (>11 wt%) Colima cone melts were derived from a phlogopite-bearing harzburgitic mantle at the base of the Jalisco block lithosphere, whereas both TVF and Colima melts with ≤10 wt% MgO were derived from the asthenosphere (i.e. arc mantle wedge). In both mantle sources, slab-derived fluids were an important source of H2O. 
    more » « less
  4. null (Ed.)
    The oxygen fugacity (fO2) of the Earth’s upper mantle and its melting products is an important parameter in the geochemical evolution of arc magmas and their connection with the continental crustal construction and growth. Several works have focused on the fO2 of peridotite xenoliths, primitive melts in relatively young arc settings, and mid-ocean ridge basalts (MORB) but few studies have attempted to examine the early redox history of primitive magmas in mature arcs. Hence, our understanding of the nature and evolution of fO2 during the subduction cycle remains limited. Here, we investigate the basaltic tephra from the Los Hornitos monogenetic cones in central-southern Chile, which are among the most primitive materials reported in the Southern Andes (olivine Mg#  92.5, and Ni  5000 mgg1). These features offer a unique opportunity to explore the fO2 conditions below the Andean arc by studying olivine phenocrysts and their contained crystal and melt inclusions. We integrated EPMA, LA-ICP-MS, and m-XANES analyses to constrain the redox conditions recorded in the basaltic tephra by three different and self-reliant methods. First, we determined the fO2 based on the olivine-spinel equilibrium, yielding average values DFMQ + 1.3 ± 0.4 (1r). Second, we constrained the fO2 conditions of melt inclusions using Fe m-XANES data and the redox dependent olivine-melt vanadium partitioning. After correcting for post-entrapment crystallization and diffusive iron loss, the Fe m-XANES data indicate that the melt inclusions were trapped in average at DFMQ +2.5 ± 0.5 (1r). Results using the olivine-melt vanadium partitioning oxybarometer in melt inclusions are in agreement with Fe m-XANES data, yielding average DFMQ values of +2.6 ± 0.3 (1r). In order to test the potential effects of other postentrapment modifications of the melt inclusions that could have affected the fO2 prior to eruption, we assessed the residence time of these magmas using Mg-Fe interdiffusion modelling in olivine. The short residence times (<200 days) compared to vanadium re-equilibration models strongly suggest that the melt inclusions preserve the prevailing fO2 conditions during their entrapment. Correlations between melt inclusions major element composition and their fO2 determined by Fe m-XANES, as well as V/Sc modelling reveal a case of post-melting oxidation of the LHC magmas. We argue that primitive arc magmas behave as an open system with respect to fO2 during their early geochemical evolution. Our data indicate a complex fO2 early history of primitive melts in the southern Andes and provide a cautionary note on the direct extrapolation of primitive melts fO2 values to that of their mantle source. 
    more » « less
  5. Abstract Amphibole is a common hydrous mineral in mantle rocks. To better understand processes leading to the formation of amphibole‐bearing peridotites and pyroxenites in the lithospheric mantle, we conducted experiments by juxtaposing a lherzolite against hydrous basaltic melts in Au‐Pd capsules. Two melts were examined, a basaltic andesite and a basalt, each containing 4 wt% of water. The experiments were run at 1200°C and 1 GPa for 3 or 12 h, and then cooled to 880°C and 0.8 GPa over 49 h. The reaction at 1200°C produced a melt‐bearing orthopyroxenite‐dunite sequence. Crystallization of the partially reacted melts during cooling lead to the formation of an amphibole‐bearing gabbronorite‐orthopyroxenite‐peridotite sequence. Orthopyroxene in the peridotite and orthopyroxenite has a poikilitic texture enclosing olivines and spinels. Amphibole in the peridotite occurs interstitial to olivine, orthopyroxene, clinopyroxene, and spinel. Comparisons of texture and mineral compositions in the experimental products with those from field observations allow a better understanding of hydrous melt‐rock reaction in the lithospheric mantle. Amphibole‐bearing pyroxenite veins (or dikes) can be formed in the lithospheric mantle or at the crust‐mantle boundary by interaction between hydrous melt and peridotite and subsequent crystallization. Hornblendite or amphibole gabbronorite can be formed in the veins when the flux of hydrous melt is high. Differences in reacting melt and peridotite compositions are responsible for the variation in amphibole composition in mantle xenoliths from different tectonic settings. The extent of melt‐rock reaction is a factor that control amphibole composition across the amphibole‐bearing vein and the host peridotite. 
    more » « less