skip to main content

Title: Post-melting oxidation of highly primitive basalts from the southern Andes
The oxygen fugacity (fO2) of the Earth’s upper mantle and its melting products is an important parameter in the geochemical evolution of arc magmas and their connection with the continental crustal construction and growth. Several works have focused on the fO2 of peridotite xenoliths, primitive melts in relatively young arc settings, and mid-ocean ridge basalts (MORB) but few studies have attempted to examine the early redox history of primitive magmas in mature arcs. Hence, our understanding of the nature and evolution of fO2 during the subduction cycle remains limited. Here, we investigate the basaltic tephra from the Los Hornitos monogenetic cones in central-southern Chile, which are among the most primitive materials reported in the Southern Andes (olivine Mg#  92.5, and Ni  5000 mgg1). These features offer a unique opportunity to explore the fO2 conditions below the Andean arc by studying olivine phenocrysts and their contained crystal and melt inclusions. We integrated EPMA, LA-ICP-MS, and m-XANES analyses to constrain the redox conditions recorded in the basaltic tephra by three different and self-reliant methods. First, we determined the fO2 based on the olivine-spinel equilibrium, yielding average values DFMQ + 1.3 ± 0.4 (1r). Second, we constrained the fO2 conditions of melt inclusions using Fe m-XANES data and the redox dependent olivine-melt vanadium partitioning. After correcting for post-entrapment crystallization and diffusive iron loss, the Fe m-XANES data indicate that the melt inclusions were trapped in average at DFMQ +2.5 ± 0.5 (1r). Results using the olivine-melt vanadium partitioning oxybarometer in melt inclusions are in agreement with Fe m-XANES data, yielding average DFMQ values of +2.6 ± 0.3 (1r). In order to test the potential effects of other postentrapment modifications of the melt inclusions that could have affected the fO2 prior to eruption, we assessed the residence time of these magmas using Mg-Fe interdiffusion modelling in olivine. The short residence times (<200 days) compared to vanadium re-equilibration models strongly suggest that the melt inclusions preserve the prevailing fO2 conditions during their entrapment. Correlations between melt inclusions major element composition and their fO2 determined by Fe m-XANES, as well as V/Sc modelling reveal a case of post-melting oxidation of the LHC magmas. We argue that primitive arc magmas behave as an open system with respect to fO2 during their early geochemical evolution. Our data indicate a complex fO2 early history of primitive melts in the southern Andes and provide a cautionary note on the direct extrapolation of primitive melts fO2 values to that of their mantle source.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Geochimica et cosmochimica acta
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Oxygen fugacity is an important but difficult parameter to constrain for primitive arc magmas. In this study, the partitioning behavior of Fe3+/Fe2+ between amphibole and glass synthesized in piston-cylinder and cold-seal apparatus experiments is developed as an oxybarometer, applicable to magmas ranging from basaltic to dacitic composition. The partitioning of Fe2+ is strongly dependent on melt polymerization; the relative compatibility of Fe2+ in amphibole decreases with increasing polymerization. The Fe2+/Mg distribution coefficient between amphibole and melt is a relatively constant value across all compositions and is, on average, 0.27. The amphibole oxybarometer is applied to amphibole in mafic enclaves, cumulates, and basaltic tephra erupted from Shiveluch volcano in Kamchatka with measured Fe3+/FeTotal. An average Fe3+/Fe2+ amphibole-glass distribution coefficient for basalt is used to convert the Fe3+/FeTotal of amphibole in samples from Shiveluch to magmatic oxygen fugacity relative to NNO. The fO2 of primitive melts at the volcano is approximately NNO+2 and is faithfully recorded in amphibole from an amphibole-rich cumulate and the basaltic tephra. Apparently, higher fO2 recorded by amphibole in mafic enclaves likely results from partial dehydrogenation of amphibole during residence in a shallow andesite storage region. We identify three pulses of mafic magma recharge within two weeks of, a month before, and two to three months before the eruption and find that, at each of these times, the host andesite was recharged by at least two magmas at varying stages of differentiation. Application of the amphibole oxybarometer not only gives insight into magmatic fO2 but also potentially details of shallow magmatic processes. 
    more » « less
  2. Abstract

    Siliceous slab-derived partial melts infiltrate the sub-arc mantle and cause rock-melt reactions, which govern the formation of diverse primary arc magmas and lithological heterogeneities. The effect of bulk water content, composition of reactants, and nature of melt infiltration (porous versus channelized) on the rock-melt reactions at sub-arc conditions have been investigated by previous studies. However, the effect of multiple episodes of rock-melt reactions in such scenarios has not been investigated before. Here, we explore mantle wedge modifications through serial additions of hydrous-silicic slab partial melts and whether such a process may ultimately explain the origin of high-Mg# andesites found in arcs worldwide. A series of piston-cylinder experiments simulate a serial addition of silicic slab melts in up to three stages (I through III) at 3 GPa and 800–1050°C, using rock-melt proportions of 75–25 and 50–50. A synthetic KLB-1 and a natural rhyolite (JR-1) represented the mantle and the slab components, respectively. Right from the first rock-melt interaction, the peridotite mantle transforms into olivine-free mica-rich pyroxenites ± amphibole ± quartz/coesite in equilibrium with rhyolitic-hydrous melts (72–80 wt% SiO2 and 40–90 Mg#). The formation of olivine-free pyroxenite seems to be controlled by complex functions of T, P, rock-melt ratio, wedge composition, and silica activity of the slab-melt. Remarkably, the pyroxenites approach a melt-buffered state with progressive stages of rock-melt reactions, where those rhyolitic melts inherit and preserve the major (alkalis, Fe, Mg, Ca) and trace element slab-signature. Our results demonstrate that lithological heterogeneities such as pyroxenites formed as products of rock-melt reactions in the sub-arc mantle may function as melt ‘enablers,’ implying that they may act as pathways that enable the infiltrating melt to retain their slab signature without undergoing modification. Moreover, the density contrast between the products of rock-melt reaction (melts and residues) and the average mantle wedge (~150 to 400 kg/m3) may help forming instabilities and diapiric rise of the slab components into the mantle wedge. However, the fate of the primitive slab-melts seems to be associated with the length of the pathway of mantle interaction which explains the evident wide magma spectrum as well as their degree of slab garnet-signature dilution. This work and the existence of high-Mg# Mexican-trondhjemites indicates that almost pristine slab-melts can make their way up to crustal levels and contribute to the arc magma diversity.

    more » « less
  3. Abstract

    Many lines of evidence from high P–T experiments, thermodynamic models, and natural observations suggest that slab-derived aqueous fluids, which flux mantle wedges contain variable amounts of dissolved carbon. However, constraints on the effects of H2O–CO2 fluids on mantle melting, particularly at mantle wedge P–T conditions, are limited. Here, we present new piston cylinder experiments on fertile and depleted peridotite compositions with 3.5 wt.% H2O and XCO2 [= molar CO2 / (CO2 + H2O)] of 0.04–0.17. Experiments were performed at 2–3 GPa and 1350°C to assess how temperature, peridotite fertility, and XCO2 of slab-derived fluid affects partial melting in mantle wedges. All experiments produce olivine + orthopyroxene +7 to 41 wt.% partial melt. Our new data, along with previous lower temperature data, show that as mantle wedge temperature increases, primary melts become richer in SiO2, FeO*, and MgO and poorer CaO, Al2O3, and alkalis when influenced by H2O–CO2 fluids. At constant P–T and bulk H2O content, the extent of melting in the mantle wedge is largely controlled by peridotite fertility and XCO2 of slab-fluid. High XCO2 depleted compositions generate ~7 wt.% melt, whereas, at identical P–T, low XCO2 fertile compositions generate ~30 to 40 wt.% melt. Additionally, peridotite fertility and XCO2 have significant effects on peridotite partial melt compositions. At a constant P–T–XCO2, fertile peridotites generate melts richer in CaO and Al2O3 and poorer in SiO2, MgO + FeO, and alkalis. Similar to previous experimental studies, at a constant P–T fertility condition, as XCO2 increases, SiO2 and CaO of melts systematically decrease and increase, respectively. Such distinctive effects of oxidized form of dissolved carbon on peridotite partial melt compositions are not observed if the carbon-bearing fluid is reduced, such as CH4-bearing. Considering the large effect of XCO2 on melt SiO2 and CaO concentrations and the relatively oxidized nature of arc magmas, we compare the SiO2/CaO of our experimental melts and melts from previous peridotite + H2O ± CO2 studies to the SiO2/CaO systematics of primitive arc basalts and ultra-calcic, silica-undersaturated arc melt inclusions. From this comparison, we demonstrate that across most P–T–fertility conditions predicted for mantle wedges, partial melts from bulk compositions with XCO2 ≥ 0.11 have lower SiO2/CaO than all primitive arc melts found globally, even when correcting for olivine fractionation, whereas partial melts from bulk compositions with XCO2 = 0.04 overlap the lower end of the SiO2/CaO field defined by natural data. These results suggest that the upper XCO2 limit of slab-fluids influencing primary arc magma formation is 0.04 < XCO2 < 0.11, and this upper limit is likely to apply globally. Lastly, we show that the anomalous SiO2/CaO and CaO/Al2O3 signatures observed in ultra-calcic arc melt inclusions can be reproduced by partial melting of either CO2-bearing hydrous fertile and depleted peridotites with 0 < XCO2 < 0.11 at 2–3 GPa, or from nominally CO2-free hydrous fertile peridotites at P > 3 GPa.

    more » « less
  4. Models of subduction zone magmatism ascribe the andesitic composition of arc magmas to crustal processes, such as crustal assimilation and/or fractional crystallization, that basaltic mantle melts experience during their ascent through the upper plate crust. However, results from time series study of olivine-phyric high-Nb basalts and basaltic andesites from two monogenetic arc volcanoes (V. Chichinautzin and Texcal Flow) that are constructed on the ~45 km thick continental basement of the central Transmexican Volcanic Belt (TMVB) are inconsistent with this model. Instead, ratios of radiogenic isotope and incompatible trace elements suggest that these volcanoes were constructed through multiple individual melt batches ascending from a progressively changing mantle source. Moreover, the high Ni contents of the olivine phenocrysts, together with their high mantle-like 3He/4Heoliv =7-8 Ra with high crustal δ18O oliv = +5.5 to +6.5‰ (n=12) point to the presence of secondary ‘reaction pyroxenites’ in the mantle source that create primary silicic arc magmas through melt-rock reaction processes in the mantle [1, 2] . Here we present additional trace element concentration of the high-Ni olivines by electron microprobe (Mn, Ca) and laser-ablation ICPMS (Li, Cr and V) analysis in order to test this model. Olivine Li (2-7 ppm) and Mn (1170- 2810 ppm) increase with decreasing fosterite (Fo89 to Fo75), while Cr (29-364 ppm), V (4-11 ppm) and Ca (825-2390 ppm) decrease. Quantitative modeling shows that these trends in their entirety cannot be controlled by fractional crystallization under variable melt water H2O or oxygen fugacity (fO2), or co-crystallization of Cr-spinel. Instead, the variations support the existence of compositionally distinct melt batches during earliest melt evolution. Moreover, the trace element trends are qualitatively consistent with a model of progressive source depletion by serial melting (shown in olivine Ca, V and Cr) that is triggered by the repetitive addition of silicic slab components (shown by olivine Li). These findings suggest mantle source variations are not eliminated despite the thick crust these magmas pass during ascent. [1] Straub et al. (2013) J Petrol 54 (4): 665-701; [2] Straub et al. (2015) Geochim Cosmochim Acta 166: 29-52. 
    more » « less
  5. Abstract

    A collection of quaternary, high-MgO (≤13.4 wt%) basanite and minette cinder and lava cones, with an enhanced arc geochemical signature, are located along the northern margin of the N–S Colima rift in western Mexico. The Colima rift overlies the lithospheric suture between the Jalisco block and Guerrero terrane, as well as the tear between the Rivera and Cocos subducting oceanic plates. From the literature, volatile analyses of olivine-hosted melt inclusions in the Colima cone samples document notably high concentrations of dissolved H2O in the melt (≤ 7.0 wt%) as well as degassing-induced phenocryst growth over a range of depths ≤25 km. In this study, it is shown that the high-MgO character of the Colima suite reflects liquid compositions, consistent with evidence for their rapid transit to the surface, without stalling in a crustal magma chamber. The most Mg-rich olivine analyzed in each sample matches the equilibrium composition at the liquidus based on olivine-melt Mn–Mg and Fe2+–Mg exchange coefficients. Application of both a Mg- and Ni-based olivine-melt thermometer, calibrated on the same experimental data set, to the Colima cone suite provides the temperature and dissolved H2O content at the liquidus. Because the Ni thermometer is insensitive to dissolved H2O in the melt, it gives the actual temperature at the onset of olivine phenocryst growth. For the nine Colima samples that range from 13.4–9.2 wt% MgO, resulting temperatures range from 1221°C to 1056°C (± 6–11°C). In contrast, the Mg thermometer is sensitive to dissolved H2O in the melt, and its application (without a correction of H2O) gives the temperature of olivine crystallization under anhydrous conditions. When the Mg- and Ni-based temperatures are paired, the depression of the liquidus (∆T = TMg–TNi) due to dissolved H2O can be obtained. For the high-MgO (>9 wt%) Colima samples, ∆T values range from 188°C to 109°C. Corrections for the effect of pressure (i.e. evidence that phenocryst growth began at ~700 MPa), increase ∆T by ~21°C. An updated model calibration (on experiments from the literature) that relates ∆T with dissolved H2O in the melt shows that the best fit (R2 = 0.95) is linear, wt% H2O = 0.047*∆T, with a standard error of ±0.5 wt%. Although the experimental data set spans a wide range of melt composition (e.g. 47–58 wt% SiO2, 4.4–10.2 wt% MgO, 1.3–4.9 wt% Na2O, 0.1–5.0 wt% K2O, 0.3–5.3 wt% H2O), no dependence on anhydrous melt composition is resolved. Application of this updated model to the Colima suite gives H2O contents of 5.1–8.8 wt% H2O, consistent with those analyzed in olivine-hosted MIs from the literature. When the thermometry and hygrometry results for the Colima cone suite are compared to those for the adjacent calc–alkaline basalts from the Tancítaro Volcanic Field (TVF) in Michoacán, two distinct linear trends in a plot of wt% H2O vs. temperature are found, indicative of different mantle sources. It is proposed that the high-MgO (>11 wt%) Colima cone melts were derived from a phlogopite-bearing harzburgitic mantle at the base of the Jalisco block lithosphere, whereas both TVF and Colima melts with ≤10 wt% MgO were derived from the asthenosphere (i.e. arc mantle wedge). In both mantle sources, slab-derived fluids were an important source of H2O.

    more » « less