skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The role of geophysics in geologic hydrogen resources
Abstract Transition to cleaner energy sources is crucial for reducing carbon emissions to zero. Among these new clean energy types, there is a growing awareness of the potential for naturally occurring geologic hydrogen (H2) as a primary energy resource that can be readily introduced into the existing energy supply. It is anticipated that geophysics will play a critical role in such endeavors. There are two major different types of geologic H2. One is natural H2 (referred to as gold H2), which is primarily accumulating naturally in reservoirs in certain geological setting; and the other is stimulated H2 (referred to as orange H2), which is produced artificially from source rocks through chemical and physical stimulations. We will first introduce geophysics in geologic H2 in comparison and contrast to the scenarios of blue and green H2. We will then discuss the significance of geophysics in both natural H2 and stimulated H2 in term of both exploration and monitoring tools. Comparing and contrasting the current geophysical tools in hydrocarbon exploration and production, we envision the innovative geophysical technologies and strategies for geologic H2 resources based on our current understanding of both natural and stimulated geologic hydrogen systems. The strategies for H2 exploration will involve a shift from reservoir- to source rock-centered approaches. Last, we believe that the geophysical methods including integration of multi-geophysics, efficient data acquisition, and machine learning in geologic H2 could be potentially provide sufficient new directions and significant opportunities to pursue research for the next one or two decades.  more » « less
Award ID(s):
2310920 1822146
PAR ID:
10592400
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Journal of Geophysics and Engineering
Volume:
21
Issue:
4
ISSN:
1742-2132
Page Range / eLocation ID:
1242 to 1253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Geologic hydrogen has emerged as a potentially transformational energy resource in the quest to transition to net-zero emission energy supplies. If realized, this new form of energy resource could circumvent the insurmountable challenge of finding and producing enough metals and critical minerals to meet the demands of clean energy by year 2025. The technical challenge to finding geologic hydrogen requires the reconfiguration and recombination of two major branches of exploration geophysics, namely, the mineral exploration and oil and gas exploration and, therefore, could provide unprecedented opportunities for the exploration geophysicists from both energy section and mineral sectors and the Society of Exploration Geophysicist in general. In this presentation, we briefly review geologic hydrogen as an energy resource and the need for integrated exploration strategies to find it, and discuss the role of hard rock mineral exploration geophysics in a source rock-center strategy for geologic hydrogen exploration. The latter could provide exploration geophysicists a new cycle of opportunities and new space of applying our expertise, albeit in reconfigured and recombined modes. 
    more » « less
  2. Abstract Geologic hydrogen has emerged as a primary energy source, drawing growing interest from the scientific community and the energy sector. One of the primary geochemical mechanisms for natural hydrogen generation is serpentinization, which is the hydration of mafic and ultramafic rocks. The United Arab Emirates (UAE) is home to one of the largest ophiolite blocks in the world, making it a promising area for geologic hydrogen exploration. In this study, we apply magnetotelluric (MT) phase tensor analysis to detect electrical anisotropy associated with serpentinization in the mantle peridotite sequence. The alignment of olivine crystals and hydrous minerals such as serpentine impart electrical anisotropy to these rocks. Current approaches for detecting serpentinization have primarily focused on changes in bulk physical properties, often overlooking the directional dependencies and complexities introduced by anisotropy. In this research, we introduce a novel geophysical framework based on the phase tensors, to identify serpentinized zones within source rocks in geologic hydrogen systems and possibly identify potential hydrogen-bearing zones. Using MT field data from the UAE, we demonstrate that phase tensor analysis effectively identifies anisotropic conductivity zones associated with serpentinization. The MT phase tensor approach we propose can support assessment of geologic hydrogen generation and its lifecycle. 
    more » « less
  3. A detailed chemical understanding of H2 interactions with binding sites in the nanoporous crystalline structure of metal–organic frameworks (MOFs) can lay a sound basis for the design of new sorbent materials. Computational quantum chemical calculations can aid in this quest. To set the stage, we review general thermodynamic considerations that control the usable storage capacity of a sor- bent. We then discuss cluster modeling of H2 ligation at MOF binding sites using state-of-the-art density functional theory (DFT) calculations, and how the binding can be understood using energy decomposition analysis (EDA). Employing these tools, we illustrate the connections between the character of the MOF binding site and the associated adsorption thermodynamics using four experi- mentally characterized MOFs, highlighting the role of open metal sites (OMSs) in accessing binding strengths relevant to room temperature storage. The sorbents are MOF-5, with no open metal sites, Ni2(m-dobdc), containing Lewis acidic Ni(II) sites, Cu(I)-MFU-4l, containing π basic Cu(I) sites and V2Cl2.8(btdd), also containing π-basic V(II) sites. We next explore the potential for binding multiple H2 molecules at a single metal site, with thermodynamics useful for storage at ambient temperature; a materials design goal which has not yet been experimentally demonstrated. Computations on Ca2+ or Mg2+ bound to catecholate or Ca2+ bound to porphyrin show the potential for binding up to 4 H2; there is precedent for the inclusion of both catecholate and porphyrin motifs in MOFs. Turning to transition metals, we discuss the prediction that two H2 molecules can bind at V(II)-MFU-4l, a material that has been synthesized with solvent coordinated to the V(II) site. Additional calculations demonstrate binding three equivalents of hydrogen per OMS in Sc(I) or Ti(I)-exchanged MFU-4l. Overall, the results suggest promising prospects for experimentally realizing higher capacity hydrogen storage MOFs, if nontrivial synthetic and desolvation challenges can be overcome. Coupled with the unbounded chemical diversity of MOFs, there is ample scope for additional exploration and discovery. 
    more » « less
  4. Water electrolysis using renewable energy inputs is being actively pursued as a green route for hydrogen production. However, it is limited by the high energy consumption due to the sluggish anodic oxygen evolution reaction (OER) and safety issues associated with H2 and O2 mixing. Here, we replaced OER with an electrocatalytic oxidative dehydrogenation (EOD) of aldehydes for bipolar H2 production and achieved industrial-level current densities at cell voltages much lower than during water electrolysis. Experimental and computational studies suggest a reasonable barrier for C-H dissociation on Cu surfaces, mainly through a diol intermediate, with a potential-dependent competition with the solution-phase Cannizzaro reaction. The kinetics of EOD reaction was further enhanced by a porous CuAg catalyst prepared from a galvanic replacement method. Through Ag incorporation and its modification of the Cu surface, the geometric current density and electrocatalyst durability were significantly improved. Finally, we engineered a bipolar H2 production system in membrane-electrode assembly-based flow cells to facilitate mass transport, achieving a maximum current density of 248 and 390 mA cm−2 at cell voltages of 0.4 V and 0.6 V, respectively. The faradaic efficiency of H2 from both cathode and anode reactions both attained ~100%. Taking advantage of the bipolar H2 production without the issues associated with H2/O2 mixing, an inexpensive, easy-to-manufacture dialysis porous membrane was demonstrated to substitute the costly anion exchange membrane, achieving an energy-efficient and cost-effective process in a simple reactor for H2 production. The estimated H2 price of $2.51/kg from an initial technoeconomic assessment is competitive with US DoE’s “Green H2” targets. 
    more » « less
  5. Rock–water–carbon interactions germane to serpentinization in hydrothermal vents have occurred for over 4 billion years, ever since there was liquid water on Earth. Serpentinization converts iron(II) containing minerals and water to magnetite (Fe3O4) plus H2. The hydrogen can generate native metals such as awaruite (Ni3Fe), a common serpentinization product. Awaruite catalyzes the synthesis of methane from H2 and CO2 under hydrothermal conditions. Native iron and nickel catalyze the synthesis of formate, methanol, acetate, and pyruvate—intermediates of the acetyl-CoA pathway, the most ancient pathway of CO2 fixation. Carbon monoxide dehydrogenase (CODH) is central to the pathway and employs Ni0 in its catalytic mechanism. CODH has been conserved during 4 billion years of evolution as a relic of the natural CO2-reducing catalyst at the onset of biochemistry. The carbide-containing active site of nitrogenase—the only enzyme on Earth that reduces N2—is probably also a relic, a biological reconstruction of the naturally occurring inorganic catalyst that generated primordial organic nitrogen. Serpentinization generates Fe3O4 and H2, the catalyst and reductant for industrial CO2 hydrogenation and for N2 reduction via the Haber–Bosch process. In both industrial processes, an Fe3O4 catalyst is matured via H2-dependent reduction to generate Fe5C2 and Fe2N respectively. Whether serpentinization entails similar catalyst maturation is not known. We suggest that at the onset of life, essential reactions leading to reduced carbon and reduced nitrogen occurred with catalysts that were synthesized during the serpentinization process, connecting the chemistry of life and Earth to industrial chemistry in unexpected ways. 
    more » « less