As concerns about the preparation of engineers grow, so has interest in the dimensions of engineering identity. By having a thorough understanding of engineering identity, departments will be better able to produce engineers who understand their role as a member of the profession. Generally, engineering identity literature has not focused on specific disciplinary identities, instead looking at engineering as a whole. Previous literature has utilized role identity theory (e.g., Gee, 2001) and identified key dimensions of engineering identity, including one’s performance/competence and interest in engineering courses and recognition as a current/future engineer (Godwin, 2016; Godwin et al., 2013; Godwin et al., 2016). This paper deepens our understanding of electrical and computer engineering identities. As part of research activities associated with National Science Foundation grant looking at professional formation of socio-technically minded students, we analyzed texts and documents from an electrical and computer engineering department to examine the department’s professed priorities. Using document analysis, we answered this research question: How is a department’s commitment to undergraduate engineering identity development expressed in departmental documents? Document analysis focuses on texts to describe some aspect of the social world (Bowen, 2009). This analysis was performed with two types of departmental documents: front-facing documents (e.g., websites, newsletters) and internal documents (e.g., ABET self-studies, program evaluations) from an electrical and computing engineering department at a public research university. Analysis employed a priori and emergent coding schemas to formulate themes related to identity, performance/capability, interest, and recognition present in departmental documents (Bowen, 2009; Godwin, 2016). Specifically, we skimmed documents to ascertain inclusion status; read and coded documents in depth; and identified broader themes across documents (Bowen, 2009). One broad theme was a lack of attention to identity; another showed emphasis on technical skills/competencies. By interrogating absences, we found that there is little attention being paid to identity development or its components in these documents. In other words, these texts do not indicate that the department is invested in supporting students’ senses of interest, performance, and recognition as electrical and computer engineers. Rather, we found that these texts emphasize the acquisition of specific concepts, skills, and competencies. Overall, analysis indicated that the department does not cultivate holistic engineering student identities. The resultant implications are by no means irrelevant—a focus on identity over specific skills could increase retention, increase student satisfaction, and produce better future engineers.
more »
« less
Pre-Conference Workshop: Affect and Identity in Engineering Education: Understanding How Emotions, Feelings, and Values Shape our Students' Work and Contribute to Their Engineering Identity
- Award ID(s):
- 2204726
- PAR ID:
- 10592402
- Publisher / Repository:
- IEEE
- Date Published:
- ISSN:
- 2377-634X
- ISBN:
- 979-8-3503-5150-7
- Page Range / eLocation ID:
- 1 to 5
- Subject(s) / Keyword(s):
- undergraduate emotion affect identity
- Format(s):
- Medium: X
- Location:
- Washington, DC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Contribution: This study examined the role of the engineering and smartness identities of three women as they made decisions about their participation in engineering majors. In addressing the under-representation of women in engineering, particularly in electrical engineering and computer science fields where they have been extremely under-represented, it is important to consider engineering identity as it has been shown to be an important component of major selection and persistence. Background: Smartness is inextricably linked to engineering and prior work has shown that identifying as smart is salient to students who choose engineering majors. However, the relative roles of students’ engineering and smartness identities as they relate to academic decision making and persistence in engineering is not well understood. Research Question: How do engineering identity and smartness identity relate to women’s decisions about choosing engineering majors in the instances of joining engineering, changing engineering major, and leaving engineering? Methodology: Data were collected from a series of three interviews with three different women. Data condensation techniques, including writing participant summary memos and analytic memos, focused on detailing participants’ academic decisions, engineering identity, and smartness identity were used for analysis. Data visualization was used to map the women’s engineering identity and smartness identity to their academic decisions related to their majors. Findings: The findings indicate the participants’ smartness identity was salient in the initial decision to matriculate into engineering, both their engineering and smartness identities remained stable as they persisted in or left engineering. And reveal complex interactions between these identities and decision making.more » « less
-
The Mechanical Engineering Department at a private, mid-sized university was awarded the National Science Foundation (NSF) Revolutionizing Engineering and Computer Science Departments (RED) grant in July 2017 to supports the development of a program that fosters students’ engineering identities in a culture of doing engineering with industry engineers. With a theme of strong connection to industry, through changes in four essential areas, a shared department vision, faculty, curriculum, and supportive policies, this culture of “engineering with engineers” is being cultivated. Many actions have taken to develop this culture. This paper reports our continued efforts in changes of these four areas: Shared department vision: The department worked together to revise the department mission to reflect the goal of fostering engineering identity. From this shared vision, the department updated the advising procedure and began addressing the challenge of diversity and inclusion faced in engineering. A diversity and inclusion statement was discussed by all faculty and included in all syllabi offered by the department to emphasize the importance of an inclusive culture. Faculty: The pandemic prompted faculty to think differently on how they deliver their courses and interact with students. Many faculty members adapted inverted classroom pedagogy and implemented remote laboratories to continue the emphasis of “doing engineering”. The industry adviser holds weekly virtual office hours to continue to provide industry contacts for students. Although faculty summer immersion this past year was postponed due to pandemic, interactions with industry were continued in various courses. Curriculum: A new mechanical engineering curriculum rolled out in the 2019-20 academic year. Although changes have to be made due to the pandemic but the focus of “engineering with engineers” remained. An example would be the Vertical Integrated Design Projects (VIDP) courses offered in Spring 2020. Utilizing virtual communication tools such as Microsoft Teams, student teams in the VIDP courses could still interact with industry advisors on a regular basis and learned from their experiences. Supportive policies: The department has worked closely with other departments, the college and the university to develop supportive policies. Recently, the college recommended the diversity and inclusion statement developed by the department to all senior design courses offered in the college. The university was aware of the goal of this project in fostering students’ engineering identities, which in term can promote the retention of URMs. The department’s effort is aligned with the new initiative the university launched to build an inclusive environment. More details of the action items in each area of change that the department has taken to build this culture of engineering with engineers will be shared in the full-length paper. This project was funded by the Division of Undergraduate Education (DUE) IUSE/PFE: RED grant through NSF.more » « less
-
The Mechanical Engineering Department at a private, mid-sized university was awarded the National Science Foundation (NSF) Revolutionizing Engineering and Computer Science Departments (RED) grant in July 2017 to supports the development of a program that fosters students’ engineering identities in a culture of doing engineering with industry engineers. With a theme of strong connection to industry, through changes in four essential areas, a shared department vision, faculty, curriculum, and supportive policies, this culture of “engineering with engineers” is being cultivated. Many actions have taken to develop this culture. This paper reports our continued efforts in changes of these four areas: Shared department vision: The department worked together to revise the department mission to reflect the goal of fostering engineering identity. From this shared vision, the department updated the advising procedure and began addressing the challenge of diversity and inclusion faced in engineering. A diversity and inclusion statement was discussed by all faculty and included in all syllabi offered by the department to emphasize the importance of an inclusive culture. Faculty: The pandemic prompted faculty to think differently on how they deliver their courses and interact with students. Many faculty members adapted inverted classroom pedagogy and implemented remote laboratories to continue the emphasis of “doing engineering”. The industry adviser holds weekly virtual office hours to continue to provide industry contacts for students. Although faculty summer immersion this past year was postponed due to pandemic, interactions with industry were continued in various courses. Curriculum: A new mechanical engineering curriculum rolled out in the 2019-20 academic year. Although changes have to be made due to the pandemic but the focus of “engineering with engineers” remained. An example would be the Vertical Integrated Design Projects (VIDP) courses offered in Spring 2020. Utilizing virtual communication tools such as Microsoft Teams, student teams in the VIDP courses could still interact with industry advisors on a regular basis and learned from their experiences. Supportive policies: The department has worked closely with other departments, the college and the university to develop supportive policies. Recently, the college recommended the diversity and inclusion statement developed by the department to all senior design courses offered in the college. The university was aware of the goal of this project in fostering students’ engineering identities, which in term can promote the retention of URMs. The department’s effort is aligned with the new initiative the university launched to build an inclusive environment. More details of the action items in each area of change that the department has taken to build this culture of engineering with engineers will be shared in the full-length paper. This project was funded by the Division of Undergraduate Education (DUE) IUSE/PFE: RED grant through NSF.more » « less
An official website of the United States government

