Topological quantum memory can protect information against local errors up to finite error thresholds. Such thresholds are usually determined based on the success of decoding algorithms rather than the intrinsic properties of the mixed states describing corrupted memories. Here we provide an intrinsic characterization of the breakdown of topological quantum memory, which both gives a bound on the performance of decoding algorithms and provides examples of topologically distinct mixed states. We employ three information-theoretical quantities that can be regarded as generalizations of the diagnostics of ground-state topological order, and serve as a definition for topological order in error-corrupted mixed states. We consider the topological contribution to entanglement negativity and two other metrics based on quantum relative entropy and coherent information. In the concrete example of the two-dimensional (2D) Toric code with local bit-flip and phase errors, we map three quantities to observables in 2D classical spin models and analytically show they all undergo a transition at the same error threshold. This threshold is an upper bound on that achieved in any decoding algorithm and is indeed saturated by that in the optimal decoding algorithm for the Toric code. Published by the American Physical Society2024 
                        more » 
                        « less   
                    This content will become publicly available on April 1, 2026
                            
                            Quantum energies of solitons with different topological charges
                        
                    
    
            The vacuum polarization energy is the leading quantum correction to the classical energy of a soliton. We study this energy for two-component solitons in one space dimension as a function of the soliton’s topological charge. We find that both the classical and the vacuum polarization energies are linear functions of the topological charge with a small offset. Because the combination of the classical and quantum offsets determines the binding energies, either all higher charge solitons are energetically bound or they are all unbound, depending on model parameters. This linearity persists even when the field configurations are very different from those of isolated solitons and would not be apparent from an analysis of their bound state spectra alone. Published by the American Physical Society2025 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2209582
- PAR ID:
- 10592449
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 111
- Issue:
- 8
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The domain structure of a fluid ferroelectric nematic is dramatically different from the domain structure of solid ferroelectrics since it is not restricted by rectilinear crystallographic axes and planar surface facets. We demonstrate that thin films of a ferroelectric nematic seeded by colloidal inclusions produce domain walls (DWs) in the shape of conics such as a parabola. These conics reduce the bound charge within the domains and at the DWs. An adequate description of the domain structures requires one to analyze the electrostatic energy, which is a challenging task. Instead, we demonstrate that a good approximation to the experimentally observed polydomain textures is obtained when the divergence of spontaneous polarization—which causes the bound charge—is heavily penalized by assuming that the elastic constant of splay in the Oseen-Frank energy is much larger than those for twist and bend. The model takes advantage of the fact that the polarization vector is essentially parallel to the nematic director throughout the sample. Published by the American Physical Society2024more » « less
- 
            The structure of hadronic form factors at high energies and their deviations from perturbative quantum chromodynamics provide insight on nonperturbative dynamics. Using an approach that is consistent with dispersion relations, we construct a model that simultaneously accounts for the pion wave function, gluonic exchanges, and quark Reggeization. In particular, we find that quark Reggeization can be investigated at high energies by studying scaling violation of the form factor. Published by the American Physical Society2025more » « less
- 
            We simulate the Lipkin-Meshkov-Glick model using the variational-quantum-eigensolver algorithm on a neutral atom quantum computer. We test the ground-state energy of spin systems with up to 15 spins. Two different encoding schemes are used: an individual spin encoding where each spin is represented by one qubit, and an efficient Gray code encoding scheme that only requires a number of qubits that scales with the logarithm of the number of spins. This more efficient encoding, together with zero-noise extrapolation techniques, is shown to improve the fidelity of the simulated energies with respect to exact solutions. Published by the American Physical Society2025more » « less
- 
            Charge order pervades the phase diagrams of quantum materials where it competes with superconducting and magnetic phases, hosts electronic phase transitions and topological defects, and couples to the lattice generating intricate structural distortions. Incommensurate charge order is readily stabilized in manganese oxides, where it is associated with anomalous electronic and magnetic properties, but its nanoscale structural inhomogeneity complicates precise characterization and understanding of its relationship with competing phases. Leveraging atomic-resolution variable-temperature cryogenic scanning transmission electron microscopy, we characterize the thermal evolution of charge order as it transforms from its ground state in a model manganite system. We find that mobile networks of discommensurations and dislocations generate phase inhomogeneity and induce global incommensurability in an otherwise lattice-locked modulation. Driving the order to melt at high temperatures, the discommensuration density grows, and regions of order locally decouple from the lattice periodicity. Published by the American Physical Society2025more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
