Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The vacuum polarization energy is the leading quantum correction to the classical energy of a soliton. We study this energy for two-component solitons in one space dimension as a function of the soliton’s topological charge. We find that both the classical and the vacuum polarization energies are linear functions of the topological charge with a small offset. Because the combination of the classical and quantum offsets determines the binding energies, either all higher charge solitons are energetically bound or they are all unbound, depending on model parameters. This linearity persists even when the field configurations are very different from those of isolated solitons and would not be apparent from an analysis of their bound state spectra alone. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available April 1, 2026
-
Zero-point fluctuations in the background of a cosmic string provide an opportunity to study the effects of topology in quantum field theory. We use a scattering theory approach to compute quantum corrections to the energy density of a cosmic string, using the “ballpoint pen” and “flowerpot” models to allow for a nonzero string radius. For computational efficiency, we consider a massless field in 2+1 dimensions. We show how to implement precise and unambiguous renormalization conditions in the presence of a deficit angle, and make use of Kontorovich-Lebedev techniques to rewrite the sum over angular momentum channels as an integral on the imaginary axis.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Ringwald, Andreas (Ed.)We compute the renormalized one-loop quantum corrections to the energy density T00(x) and pressure T11(x) for solitons in the 1+1 dimensional scalar sine-Gordon and kink models. We show how precise implementation of counterterms in dimensional regularization resolves previously identified discrepancies between the integral of T00(x) and the known correction to the total energy.more » « less
-
Klimchitskaya, Galina L.; Mostepanenko, Vladimir M. (Ed.)Using the formulation of the electromagnetic Green’s function of a perfectly conducting cone in terms of analytically continued angular momentum, we compute the Casimir–Polder interaction energy of a cone with a polarizable particle. We introduce this formalism by first reviewing the analogous approach for a perfectly conducting wedge, and then demonstrate the calculation through numerical evaluation of the resulting integrals.more » « less
An official website of the United States government
