Toughness of soft materials such as elastomers and gels depends on their ability to dissipate energy and to reduce stress concentration at the crack tip. The primary energy dissipation mechanism is viscoelasticity. Most analyses and models of fracture are based on linear viscoelastic theory (LVT) where strains are assumed to be small and the relaxation mechanisms are independent of stress or strain history. A well-known paradox is that the size of the dissipative zone predicted by LVT is unrealistically small. Here we use a physically based nonlinear viscoelastic model to illustrate why the linear theory breaks down. Using this nonlinear model and analogs of crack problems, we give a plausible resolution to this paradox. In our model, viscoelasticity arises from the breaking and healing of physical cross-links in the polymer network. When the deformation is small, the kinetics of bond breaking and healing are independent of the strain/stress history and the model reduces to the standard linear theory. For large deformations, localized bond breaking damages the material near the crack tip, reducing stress concentration and dissipating energy at the same time. The damage zone size is a new length scale which depends on the strain required to accelerate bond breaking kinetics. These effects are illustrated by considering two cases with stress concentrations: the evolution of spherical damage in a viscoelastic body subjected to internal pressure, and a zero degree peel test.
more »
« less
This content will become publicly available on June 1, 2026
Mechanics of CO2-induced dynamic covalent polymer networks: Constitutive modeling and crack healing
CO2-induced dynamic covalent polymer networks (DCPNs) have received significant attention due to their capability of sequestering CO2 to remodel material properties. Despite the promising success of carbon sequestration in the polymer, the mechanistic understanding of the CO2-induced polymer network is still at the very beginning. A theoretical framework to understand the CO2-induced formation of bulk networks and healing of interfacial cracks of DCPNs has not been established. Here, we build up a polymer-network-based theoretical model system that can mechanistically explain the constitutive behavior and crack healing of CO2-induced DCPNs. We assume that the DCPN consists of interpenetrating networks crosslinked by CO2-induced dynamic bonds which follow a force-dependent chemical kinetics. During the healing process, we consider the CO2 molecules diffuse from the surface to the crack interface to reform the polymer network for interfacial repair. Our theoretical framework can calculate the stress-strain behaviors of both original and healed DCPNs. We demonstrate that the theoretically calculated stress-strain responses of the original DCPNs across various CO2 concentrations, as well as those of healed DCPNs under different CO2 concentrations, consistently match the documented experimental results. We expect our model to become an invaluable tool for innovating, designing, understanding, and optimizing CO2-induced DCPNs.
more »
« less
- Award ID(s):
- 1943598
- PAR ID:
- 10592460
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of the Mechanics and Physics of Solids
- Volume:
- 199
- Issue:
- C
- ISSN:
- 0022-5096
- Page Range / eLocation ID:
- 106098
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work is focused on the mass transport of methanol and the methanol-assisted crack healing in poly(methyl methacrylate) (PMMA)–graphene composites at different temperatures. The effect of the fraction of graphene on the mass transport of methanol and the methanol-assisted crack healing is also studied. The experimental results reveal that adding graphene to the PMMA matrix increases the resistance to the migration/diffusion of methanol and polymer chains in the PMMA matrix, and the absorption of methanol follows anomalous diffusion. The activation energies for the case I transport and case II transport in the PMMA–graphene composites are relatively independent of the fraction of graphene, and are larger than the corresponding ones in pure PMMA. Increasing the healing time and healing temperature allows for more polymer chains to migrate/diffuse across fractured surfaces, leading to the increase in the fracture strength of the crack-healed PMMA–graphene composites.more » « less
-
Van Mullem, T.; De Belie, N.; Ferrara, L.; Gruyaert, E.; Van Tittelboom, K. (Ed.)The goal of this research is to develop innovative damage-responsive bacterial-based self-healing fibers (hereafter called BioFiber) that can be incorporated into concrete to enable two functionalities simultaneously: (1) crack bridging functionality to control crack growth and (2) crack healing functionality when a crack occurs. The BioFiber is comprised of a load-bearing core fiber, a sheath of bacteria-laden hydrogel, and an outer impermeable strain-responsive shell coating. An instant soaking manufacturing process was used with multiple reservoirs containing bacteria-laden, hydrophilic prepolymer and crosslinking reagents to develop BioFiber. Sodium-alginate was used as a prepolymer to produce calcium-alginate hydrogel via ionic crosslinking on the core fiber. The dormant bacteria (spore) ofLysinibacillus sphaericuswas incorporated in hydrogel as a self-healing agent. Then, an impermeable polymeric coating was applied to the hydrogel-coated core fibers. The impermeable strain-responsive shell coating material was manufactured using the polymer blend of polystyrene and polylactic acid. The high swelling capacity of calcium-alginate provides the water required for the microbially induced calcium carbonate precipitation (MICP) chemical pathway, i.e., ureolysis in this study. The strain-responsive impermeable coating provides adequate flexibility during concrete casting to protect the spores and alginate before cracking and sufficient stress-strain behavior to grant damage-responsiveness upon crack occurrence to activate MICP. To evaluate the behavior of developed BioFiber, the swelling capacity of the hydrogel, the impermeability of shell coating, the spore casting survivability, and MICP activities were investigated.more » « less
-
null (Ed.)Due to a mismatch in mechanical moduli, the interface between constituent materials in a composite is the primary locus for crack nucleation due to stress concentration. Relaxation of interfacial stresses, without modifying the properties of constituent materials, is a potent means of improving composite performance with broad appeal. Herein, we develop a new type of adaptive interface that utilizes thiol–thioester exchange (TTE) at the filler–polymer interface. Specifically, dynamic covalent bonds sequestered at material interfaces are reversibly exchanged in the presence of thioester moieties, excess thiol and a base/nucleophile catalyst. Employing this active interface effectively mitigates deleterious growth of interfacial stresses, thereby enhancing the composite's mechanical performance in terms of reductions in polymerization shrinkage stress and improvement in toughness. Activating interfacial TTE in an otherwise static matrix resulted in 45% reduction in the polymerization stress, more significant post-polymerization stress relaxation and drastically increased toughness relative to control composites incapable of TTE bond exchange but otherwise identical. In particular, the higher fracture toughness in TTE-activated composites is attributed to the alleviation of crack tip strain concentration, as revealed by digital image correlation.more » « less
-
Abstract The intrinsic reversibility of dynamic covalent bonding, such as the furan‐maleimide Diels‐Alder (DA) cycloaddition reactions, enables reprocessable, self‐healing polymer materials that can be reconfigured via the mechanism of solid‐state plasticity. In this work, the temperature‐dependent exchange rates of stereochemically distinctendoandexoDA bonds are leveraged to achieve tunable, temperature‐ and stress‐activated shape morphing in Diels‐Alder polymer (DAP) networks. Through thermal annealing, ≈35% ofendoDA isomers are converted in neat DAP networks to the thermodynamically favoredexoform, achieving ≈97%exoafter complete annealing at 60 °C. This conversion results in a ≈1.7 fold increase in elastic modulus, from 1.7 to 3.0 MPa, and significantly alters the stress relaxation and shape recovery behavior. Spatially resolved annealing, is further showcased enabling the precise control of spatial distributions ofendoandexoDA bonds across planar geometries. The locally distinct concentrations ofendo/exoisomers, achieved by temperature‐induced conversion ofendoDA isomers to the thermodynamically stableexoDA isomers, gave rise to the spatial distributions of stress relaxation rates and elastic strain recovery mismatch to enable controlled stereochemical shape morphing. This approach provides a simplified, thermally driven method for shape morphing, with potential applications in soft robotics and flexible electronics.more » « less
An official website of the United States government
