The recursive Neville algorithm allows one to calculate interpolating functions recursively. Upon a judicious choice of the abscissas used for the interpolation (and extrapolation), this algorithm leads to a method for convergence acceleration. For example, one can use the Neville algorithm in order to successively eliminate inverse powers of the upper limit of the summation from the partial sums of a given, slowly convergent input series. Here, we show that, for a particular choice of the abscissas used for the extrapolation, one can replace the recursive Neville scheme by a simple one-step transformation, while also obtaining access to subleading terms for the transformed series after convergence acceleration. The matrix-based, unified formulas allow one to estimate the rate of convergence of the partial sums of the input series to their limit. In particular, Bethe logarithms for hydrogen are calculated to 100 decimal digits. Generalizations of the method to series whose remainder terms can be expanded in terms of inverse factorial series, or series with half-integer powers, are also discussed.
more »
« less
This content will become publicly available on November 1, 2026
Global rational approximations of functions with factorially divergent asymptotic series
We construct a new type of convergent, and asymptotic, representations, dyadic expansions. Their convergence is geometric and the region of convergence often extends from infinity down to . We show that dyadic expansions are numerically efficient representations. For special functions such as Bessel, Airy, Ei, erfc, Gamma, etc. the region of convergence of dyadic series is the complex plane minus a ray, with this cut chosen at will. Dyadic expansions thus provide uniform, geometrically convergent asymptotic expansions including near antistokes rays. We prove that relatively general functions, Écalle resurgent ones, possess convergent dyadic expansions. These expansions extend to operators, resulting in representations of the resolvent of self-adjoint operators as series in terms of the associated unitary evolution operator evaluated at some prescribed discrete times (alternatively, for positive operators, in terms of the generated semigroup).
more »
« less
- Award ID(s):
- 2206241
- PAR ID:
- 10592491
- Publisher / Repository:
- Journal of Approximation Theory
- Date Published:
- Journal Name:
- Journal of Approximation Theory
- Volume:
- 311
- Issue:
- C
- ISSN:
- 0021-9045
- Page Range / eLocation ID:
- 106178
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the 1970's, Serre exploited congruences between q-expansion coefficients of Eisenstein series to produce p-adic families of Eisenstein series and, in turn, p-adic zeta functions. Partly through integration with more recent machinery, including Katz's approach to p-adic differential operators, his strategy has influenced four decades of developments. Prior papers employing Katz's and Serre's ideas exploiting differential operators and congruences to produce families of automorphic forms rely crucially on q-expansions of automorphic forms. The overarching goal of the present paper is to adapt the strategy to automorphic forms on unitary groups, which lack q-expansions when the signature is of the form (a,b), a≠b. In particular, this paper completely removes the restrictions on the signature present in prior work. As intermediate steps, we achieve two key objectives. First, partly by carefully analyzing the action of the Young symmetrizer on Serre-Tate expansions, we explicitly describe the action of differential operators on the Serre-Tate expansions of automorphic forms on unitary groups of arbitrary signature. As a direct consequence, for each unitary group, we obtain congruences and families analogous to those studied by Katz and Serre. Second, via a novel lifting argument, we construct a p-adic measure taking values in the space of p-adic automorphic forms on unitary groups of any prescribed signature. We relate the values of this measure to an explicit p-adic family of Eisenstein series. One application of our results is to the recently completed construction of p-adic L-functions for unitary groups by the first named author, Harris, Li, and Skinner.more » « less
-
In the 1970's, Serre exploited congruences between q-expansion coefficients of Eisenstein series to produce p-adic families of Eisenstein series and, in turn, p-adic zeta functions. Partly through integration with more recent machinery, including Katz's approach to p-adic differential operators, his strategy has influenced four decades of developments. Prior papers employing Katz's and Serre's ideas exploiting differential operators and congruences to produce families of automorphic forms rely crucially on q-expansions of automorphic forms. The overarching goal of the present paper is to adapt the strategy to automorphic forms on unitary groups, which lack q-expansions when the signature is of the form (a,b), a≠b. In particular, this paper completely removes the restrictions on the signature present in prior work. As intermediate steps, we achieve two key objectives. First, partly by carefully analyzing the action of the Young symmetrizer on Serre-Tate expansions, we explicitly describe the action of differential operators on the Serre-Tate expansions of automorphic forms on unitary groups of arbitrary signature. As a direct consequence, for each unitary group, we obtain congruences and families analogous to those studied by Katz and Serre. Second, via a novel lifting argument, we construct a p-adic measure taking values in the space of p-adic automorphic forms on unitary groups of any prescribed signature. We relate the values of this measure to an explicit p-adic family of Eisenstein series. One application of our results is to the recently completed construction of p-adic L-functions for unitary groups by the first named author, Harris, Li, and Skinner.more » « less
-
null (Ed.)A bstract We calculate the two-loop QCD corrections to gg → ZZ involving a closed top-quark loop. We present a new method to systematically construct linear combinations of Feynman integrals with a convergent parametric representation, where we also allow for irreducible numerators, higher powers of propagators, dimensionally shifted integrals, and subsector integrals. The amplitude is expressed in terms of such finite integrals by employing syzygies derived with linear algebra and finite field techniques. Evaluating the amplitude using numerical integration, we find agreement with previous expansions in asymptotic limits and provide ab initio results also for intermediate partonic energies and non-central scattering at higher energies.more » « less
-
Abstract This work extends a sequence of studies devoted to the analysis of the laminar flow in porous channels with retracting walls. This problem was originally used to model slab propellant grain regression. After identifying a subtle endpoint singularity that affects the former solution in its third derivative, a stretched variable is introduced to capture the rapid variations in the channel's core. The core refers to the midsection plane where the shear layer is displaced due to hard blowing at the walls. Then using matched‐asymptotic expansions with logarithmic corrections, a composite solution is developed following successive integrations that start with the fourth derivative. In the process, the inner correction is retrieved from the fourth‐order equation governing the symmetric injection‐driven flow near the core. The resulting approximation is expressed in terms of generalized hypergeometric functions and is confirmed using numerics and limiting process verifications. The composite solution is shown to outperform the former, outer solution, as the core is approached or as the injection Reynolds number is increased. Without undermining the practicality of the former solution outside the thin core region, the development of a matched‐asymptotic approximation enables us to suppress the often overlooked singular terms, thus ensuring a uniformly valid outcome down to the third and fourth derivatives, which affect the pressure distribution and its normal gradients.more » « less
An official website of the United States government
