skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 25, 2026

Title: Reinforcement learning-based dynamic field exploration and reconstruction using multi-robot systems for environmental monitoring
In the realm of real-time environmental monitoring and hazard detection, multi-robot systems present a promising solution for exploring and mapping dynamic fields, particularly in scenarios where human intervention poses safety risks. This research introduces a strategy for path planning and control of a group of mobile sensing robots to efficiently explore and reconstruct a dynamic field consisting of multiple non-overlapping diffusion sources. Our approach integrates a reinforcement learning-based path planning algorithm to guide the multi-robot formation in identifying diffusion sources, with a clustering-based method for destination selection once a new source is detected, to enhance coverage and accelerate exploration in unknown environments. Simulation results and real-world laboratory experiments demonstrate the effectiveness of our approach in exploring and reconstructing dynamic fields. This study advances the field of multi-robot systems in environmental monitoring and has practical implications for rescue missions and field explorations.  more » « less
Award ID(s):
2148353
PAR ID:
10592587
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers in Robotics and AI
Date Published:
Journal Name:
Frontiers in Robotics and AI
Volume:
12
ISSN:
2296-9144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a dynamic multi-robot mapping framework that combines Blockchain technology for swarm management with a Hybrid Ant Colony Optimization (HACO) algorithm for path planning. Blockchain-based swarm contracts enable decentralized, transparent, and secure task allocation, acceptance, tracking, and reward distribution among multiple robots. HACO facilitates efficient path planning in complex environments through cooperative and competitive strategies. We deploy multiple LiDAR-equipped Unitree Go2 dog robots to collaboratively and competitively map divided sub-areas, with task reassignment based on real-time feedback and the selected strategy. In cooperative mode, robots share data to boost efficiency and accuracy; in competitive mode, they work independently to reduce redundancy and optimize resources. Swarm contracts also verify full sub-area coverage via the merged map. Results show that integrating blockchain-based management with HACO significantly enhances mapping performance, delivering a robust and scalable solution for realworld multi-robot systems. 
    more » « less
  2. Diffusion models have recently been successfully applied to a wide range of robotics applications for learning complex multi-modal behaviors from data. However, prior works have mostly been confined to single-robot and small-scale environments due to the high sample complexity of learning multi-robot diffusion models. In this paper, we propose a method for generating collision-free multi-robot trajectories that conform to underlying data distributions while using only single-robot data. Our algorithm, Multi-robot Multi-model planning Diffusion (MMD), does so by combining learned diffusion models with classical search-based techniques – generating data-driven motions under collision constraints. Scaling further, we show how to compose multiple diffusion models to plan in large environments where a single diffusion model fails to generalize well. We demonstrate the effectiveness of our approach in planning for dozens of robots in a variety of simulated scenarios motivated by logistics environments. View video demonstrations in our supplementary material, and our code at: github.com/yoraish/mmd. 
    more » « less
  3. Abstract Researchers are exploring augmented reality (AR) interfaces for online robot programming to streamline automation and user interaction in various environments. This study designs, implements, and experimentally validates an AR interface for online programming and data visualization. This new interface integrates human manipulation in the randomized robot path planning, reducing the inherent randomness of the methods with human intervention. The interface uses holographic items that correspond to physical elements to interact with redundant robot manipulators. Utilizing rapidly random tree star (RRT*) and spherical linear interpolation (SLERP) algorithms, the interface achieves end-effector's progression through the collision-free path with smooth rotation. Next, sequential quadratic programming (SQP) achieve robot's configurations for this progression. The platform executes the RRT* algorithm in a loop, with each iteration independently exploring the shortest path through random sampling, leading to variations in the optimized paths produced. These paths are then demonstrated to AR users, who select the most appropriate path based on the environmental context and their intuition. The accuracy and effectiveness of the interface are validated through its implementation and testing with a 7-degrees-of-freedom (DOFs) manipulator, indicating its potential to optimize path planning and to advance current practices in robot programming. 
    more » « less
  4. Integer programming (IP) has proven to be highly effective in solving many path-based optimization problems in robotics. However, the applications of IP are generally done in an ad-hoc, problem-specific manner. In this work, after examined a wide range of path-based optimization problems, we describe an IP solution methodology for these problems that is both easy to apply (in two simple steps) and high-performance in terms of the computation time and the achieved optimal- ity. We demonstrate the generality of our approach through the application to three challenging path-based optimization problems: multi-robot path planning (MPP), minimum constraint removal (MCR), and reward collection problems (RCPs). Associ- ated experiments show that the approach can efficiently produce (near-)optimal solutions for problems with large state spaces, complex constraints, and complicated objective functions. In conjunction with the proposition of the IP methodology, we introduce two new and practical robotics problems: multi-robot minimum constraint removal (MMCR) and multi-robot path planning (MPP) with partial solutions, which can be quickly and effectively solved using our proposed IP solution pipeline. 
    more » « less
  5. null (Ed.)
    Abstract In human–robot collaborative tasks, the performance of robot path planning has a direct impact on the robot-to-human hand-over process, or even the collaboration quality. In this work, we propose an evaluation study on multiple robot path planners with different metrics and reveal their pros and cons in representative human–robot collaborative manufacturing contexts. Afterward, based on the proposed metrics, we define a cost function for the dual-arm robot to choose optimized path planning solutions with maximum efficiency for its human partner in human–robot collaboration. We implement the proposed evaluation and optimization approaches to multiple realistic human–robot collaborative manufacturing contexts. Experimental results and evaluations suggest that our approaches are able to provide positive solutions for the robot path planner selection and also open a window for exploring more complicated and general robot path planning applications to human–robot collaborative tasks in smart manufacturing contexts. 
    more » « less